衣壳粒子表示法中的介子交换流:氘核磁形式因子的计算

IF 1.7 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY Few-Body Systems Pub Date : 2024-05-13 DOI:10.1007/s00601-024-01921-5
Yan Kostylenko, Oleksandr Shebeko
{"title":"衣壳粒子表示法中的介子交换流:氘核磁形式因子的计算","authors":"Yan Kostylenko,&nbsp;Oleksandr Shebeko","doi":"10.1007/s00601-024-01921-5","DOIUrl":null,"url":null,"abstract":"<div><p>We show an original way to build up a new family of electromagnetic meson exchange current operators via the method of unitary clothing transformations. Being introduced in such a way they do not depend on the choice of states with which we calculate the matrix elements. The new expressions for meson exchange currents has been compared with ones derived within the previous explorations. Special attention is paid to the deuteron eigenvalue problem and finding the proper deuteron states in a moving frame. An effective technique of ensuring the gauge independence based upon generalization of Siegert’s theorem is proposed. Magnetic form factor of the deuteron is calculated with both one-body and two-body mechanisms. The influence of relativistic effects in the one-body calculation has been considered. Besides, separate contributions from the different meson exchange mechanisms are discussed.</p></div>","PeriodicalId":556,"journal":{"name":"Few-Body Systems","volume":"65 2","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Meson Exchange Currents in the Clothed-Particle Representation: Calculation of the Deuteron Magnetic Form Factor\",\"authors\":\"Yan Kostylenko,&nbsp;Oleksandr Shebeko\",\"doi\":\"10.1007/s00601-024-01921-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We show an original way to build up a new family of electromagnetic meson exchange current operators via the method of unitary clothing transformations. Being introduced in such a way they do not depend on the choice of states with which we calculate the matrix elements. The new expressions for meson exchange currents has been compared with ones derived within the previous explorations. Special attention is paid to the deuteron eigenvalue problem and finding the proper deuteron states in a moving frame. An effective technique of ensuring the gauge independence based upon generalization of Siegert’s theorem is proposed. Magnetic form factor of the deuteron is calculated with both one-body and two-body mechanisms. The influence of relativistic effects in the one-body calculation has been considered. Besides, separate contributions from the different meson exchange mechanisms are discussed.</p></div>\",\"PeriodicalId\":556,\"journal\":{\"name\":\"Few-Body Systems\",\"volume\":\"65 2\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Few-Body Systems\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00601-024-01921-5\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Few-Body Systems","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s00601-024-01921-5","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们展示了一种通过单元衣变换建立电磁介子交换电流算子新系列的独创方法。它们的引入方式并不依赖于我们计算矩阵元素时所选择的状态。介子交换电流的新表达式与之前探索中得出的表达式进行了比较。我们特别关注了氘核特征值问题以及在运动框架中寻找合适的氘核状态。基于西格特定理的广义化,提出了一种确保量规独立性的有效技术。用单体和双体机制计算了氘核的磁形式因子。在单体计算中考虑了相对论效应的影响。此外,还讨论了不同介子交换机制的单独贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Meson Exchange Currents in the Clothed-Particle Representation: Calculation of the Deuteron Magnetic Form Factor

We show an original way to build up a new family of electromagnetic meson exchange current operators via the method of unitary clothing transformations. Being introduced in such a way they do not depend on the choice of states with which we calculate the matrix elements. The new expressions for meson exchange currents has been compared with ones derived within the previous explorations. Special attention is paid to the deuteron eigenvalue problem and finding the proper deuteron states in a moving frame. An effective technique of ensuring the gauge independence based upon generalization of Siegert’s theorem is proposed. Magnetic form factor of the deuteron is calculated with both one-body and two-body mechanisms. The influence of relativistic effects in the one-body calculation has been considered. Besides, separate contributions from the different meson exchange mechanisms are discussed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Few-Body Systems
Few-Body Systems 物理-物理:综合
CiteScore
2.90
自引率
18.80%
发文量
64
审稿时长
6-12 weeks
期刊介绍: The journal Few-Body Systems presents original research work – experimental, theoretical and computational – investigating the behavior of any classical or quantum system consisting of a small number of well-defined constituent structures. The focus is on the research methods, properties, and results characteristic of few-body systems. Examples of few-body systems range from few-quark states, light nuclear and hadronic systems; few-electron atomic systems and small molecules; and specific systems in condensed matter and surface physics (such as quantum dots and highly correlated trapped systems), up to and including large-scale celestial structures. Systems for which an equivalent one-body description is available or can be designed, and large systems for which specific many-body methods are needed are outside the scope of the journal. The journal is devoted to the publication of all aspects of few-body systems research and applications. While concentrating on few-body systems well-suited to rigorous solutions, the journal also encourages interdisciplinary contributions that foster common approaches and insights, introduce and benchmark the use of novel tools (e.g. machine learning) and develop relevant applications (e.g. few-body aspects in quantum technologies).
期刊最新文献
The Steepest Slope toward a Quantum Few-Body Solution: Gradient Variational Methods for the Quantum Few-Body Problem Rainbow Gravity Effects on Relativistic Quantum Oscillator Field in a Topological Defect Cosmological Space-Time On a Repulsive Short-Range Potential Influence on the Harmonic Oscillator Investigation of Mass and Decay Characteristics of the All-light Tetraquark Analytical Solutions of the Schrödinger Equation for Two Confined Particles with the van der Waals Interaction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1