{"title":"多无人机辅助卸载,联合优化移动边缘计算的能耗和延迟","authors":"Qiang Tang;Sihao Wen;Shiming He;Kun Yang","doi":"10.1109/JSYST.2024.3395845","DOIUrl":null,"url":null,"abstract":"To address the performance limitations caused by the insufficient computing capacity and energy of edge internet of things devices (IoTDs), we proposed a multi-unmanned aerial vehicles (UAV)-assisted mobile edge computing (MEC) application framework in this article. In this framework, UAVs equipped with high-performance computing devices act as aerial servers deployed in the target area to support data offloading and task computing for IoTDs. We formulated an optimization problem to jointly optimize the connection scheduling, computing resource allocation, and UAVs' flying trajectories, considering the device offloading priority, to achieve a joint optimization of energy consumption and latency for all IoTDs during a given time period. Subsequently, to address this problem, we employed deep reinforcement learning for dynamic trajectory planning, supplemented by optimization theory and heuristic algorithm based on matching theory to assist in solving connection scheduling and computing resource allocation. To evaluate the performance of proposed algorithm, we compared it with deep deterministic policy gradient, particle swarm optimization, random moving, and local execution schemes. Simulation results demonstrated that the multi-UAV-assisted MEC significantly reduces the computing cost of IoTDs. Moreover, our proposed solution exhibited effectiveness in terms of convergence and optimization of computing costs compared to other benchmark schemes.","PeriodicalId":55017,"journal":{"name":"IEEE Systems Journal","volume":"18 2","pages":"1414-1425"},"PeriodicalIF":4.0000,"publicationDate":"2024-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-UAV-Assisted Offloading for Joint Optimization of Energy Consumption and Latency in Mobile Edge Computing\",\"authors\":\"Qiang Tang;Sihao Wen;Shiming He;Kun Yang\",\"doi\":\"10.1109/JSYST.2024.3395845\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To address the performance limitations caused by the insufficient computing capacity and energy of edge internet of things devices (IoTDs), we proposed a multi-unmanned aerial vehicles (UAV)-assisted mobile edge computing (MEC) application framework in this article. In this framework, UAVs equipped with high-performance computing devices act as aerial servers deployed in the target area to support data offloading and task computing for IoTDs. We formulated an optimization problem to jointly optimize the connection scheduling, computing resource allocation, and UAVs' flying trajectories, considering the device offloading priority, to achieve a joint optimization of energy consumption and latency for all IoTDs during a given time period. Subsequently, to address this problem, we employed deep reinforcement learning for dynamic trajectory planning, supplemented by optimization theory and heuristic algorithm based on matching theory to assist in solving connection scheduling and computing resource allocation. To evaluate the performance of proposed algorithm, we compared it with deep deterministic policy gradient, particle swarm optimization, random moving, and local execution schemes. Simulation results demonstrated that the multi-UAV-assisted MEC significantly reduces the computing cost of IoTDs. Moreover, our proposed solution exhibited effectiveness in terms of convergence and optimization of computing costs compared to other benchmark schemes.\",\"PeriodicalId\":55017,\"journal\":{\"name\":\"IEEE Systems Journal\",\"volume\":\"18 2\",\"pages\":\"1414-1425\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-03-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Systems Journal\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10526376/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Systems Journal","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10526376/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Multi-UAV-Assisted Offloading for Joint Optimization of Energy Consumption and Latency in Mobile Edge Computing
To address the performance limitations caused by the insufficient computing capacity and energy of edge internet of things devices (IoTDs), we proposed a multi-unmanned aerial vehicles (UAV)-assisted mobile edge computing (MEC) application framework in this article. In this framework, UAVs equipped with high-performance computing devices act as aerial servers deployed in the target area to support data offloading and task computing for IoTDs. We formulated an optimization problem to jointly optimize the connection scheduling, computing resource allocation, and UAVs' flying trajectories, considering the device offloading priority, to achieve a joint optimization of energy consumption and latency for all IoTDs during a given time period. Subsequently, to address this problem, we employed deep reinforcement learning for dynamic trajectory planning, supplemented by optimization theory and heuristic algorithm based on matching theory to assist in solving connection scheduling and computing resource allocation. To evaluate the performance of proposed algorithm, we compared it with deep deterministic policy gradient, particle swarm optimization, random moving, and local execution schemes. Simulation results demonstrated that the multi-UAV-assisted MEC significantly reduces the computing cost of IoTDs. Moreover, our proposed solution exhibited effectiveness in terms of convergence and optimization of computing costs compared to other benchmark schemes.
期刊介绍:
This publication provides a systems-level, focused forum for application-oriented manuscripts that address complex systems and system-of-systems of national and global significance. It intends to encourage and facilitate cooperation and interaction among IEEE Societies with systems-level and systems engineering interest, and to attract non-IEEE contributors and readers from around the globe. Our IEEE Systems Council job is to address issues in new ways that are not solvable in the domains of the existing IEEE or other societies or global organizations. These problems do not fit within traditional hierarchical boundaries. For example, disaster response such as that triggered by Hurricane Katrina, tsunamis, or current volcanic eruptions is not solvable by pure engineering solutions. We need to think about changing and enlarging the paradigm to include systems issues.