Abdul Wafi, Liszulfah Roza, Gerald Ensang Timuda, Demas Aji, Deni Shidqi Khaerudini, Nono Darsono, Nurfina Yudasari, Erzsébet Szabó-Bárdos, Ottó Horváth, Mohammad Mansoob Khan
{"title":"掺杂 N 的 TiO2 在可见光照射下光催化降解无色和有色有机污染物","authors":"Abdul Wafi, Liszulfah Roza, Gerald Ensang Timuda, Demas Aji, Deni Shidqi Khaerudini, Nono Darsono, Nurfina Yudasari, Erzsébet Szabó-Bárdos, Ottó Horváth, Mohammad Mansoob Khan","doi":"10.1007/s11243-024-00584-9","DOIUrl":null,"url":null,"abstract":"<div><p>Titanium dioxide (TiO<sub>2</sub>) can only be stimulated by UV light, making its real application for photocatalytic water treatments ineffective, particularly under sunlight and visible light irradiation. As a result, significant efforts have been conducted over the last decades to fabricate visible light-active TiO<sub>2</sub> photocatalysts through band-gap engineering. Herein, nitrogen-doped titanium dioxide (N-TiO<sub>2</sub>) photocatalysts were effectively prepared by utilizing a simple sol–gel process with ethanol as a single solvent and urea as the nitrogen source under ambient temperature and pressure. The effects of urea concentration (0, 2, 4, 6 urea/TTIP mol ratio) on the optical, structural, morphological, and photocatalytic properties of the photocatalysts were investigated. SEM morphology revealed an aggregated nano-spherical shape in all samples. HR-TEM and SAED patterns showed an anatase phase of 2-N-TiO<sub>2</sub>. The X-ray diffraction analysis also showed a pure anatase phase for pure TiO<sub>2</sub>, 2-N-TiO<sub>2</sub>, and 4-N-TiO<sub>2</sub>. However, the crystalline phase transformed to amorphous for 6-N-TiO<sub>2</sub>. The crystallite size reduced from 14.16 to 9.76 nm upon increasing urea concentration. The band-gap energy of N-TiO<sub>2</sub> also decreased from 3.25 to 2.95 eV. Furthermore, the photocatalytic experiment was examined for the degradation of colorless and colored pollutants, such as salicylic acid (SA), methyl blue (MB), and rhodamine B (RhB). The results showed the photocatalytic activity of 2-N-TiO<sub>2</sub> exhibited an optimum efficiency compared to the 4-N-TiO<sub>2</sub> and 6-N-TiO<sub>2</sub>, for photocatalytic degradation of SA (<i>k</i> = 0.0265 min<sup>−1</sup>), MB (<i>k</i> = 0.0180 min<sup>−1</sup>) and RhB (<i>k</i> = 0.1071 min<sup>−1</sup>), under visible light irradiation. Therefore, the results suggest that crystallite size, urea (as an N dopant) concentration, and organic model pollutants were critical parameters for the photocatalytic activity of N-TiO<sub>2</sub> under visible irradiation.</p></div>","PeriodicalId":803,"journal":{"name":"Transition Metal Chemistry","volume":"49 5","pages":"305 - 317"},"PeriodicalIF":1.6000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"N-doped TiO2 for photocatalytic degradation of colorless and colored organic pollutants under visible light irradiation\",\"authors\":\"Abdul Wafi, Liszulfah Roza, Gerald Ensang Timuda, Demas Aji, Deni Shidqi Khaerudini, Nono Darsono, Nurfina Yudasari, Erzsébet Szabó-Bárdos, Ottó Horváth, Mohammad Mansoob Khan\",\"doi\":\"10.1007/s11243-024-00584-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Titanium dioxide (TiO<sub>2</sub>) can only be stimulated by UV light, making its real application for photocatalytic water treatments ineffective, particularly under sunlight and visible light irradiation. As a result, significant efforts have been conducted over the last decades to fabricate visible light-active TiO<sub>2</sub> photocatalysts through band-gap engineering. Herein, nitrogen-doped titanium dioxide (N-TiO<sub>2</sub>) photocatalysts were effectively prepared by utilizing a simple sol–gel process with ethanol as a single solvent and urea as the nitrogen source under ambient temperature and pressure. The effects of urea concentration (0, 2, 4, 6 urea/TTIP mol ratio) on the optical, structural, morphological, and photocatalytic properties of the photocatalysts were investigated. SEM morphology revealed an aggregated nano-spherical shape in all samples. HR-TEM and SAED patterns showed an anatase phase of 2-N-TiO<sub>2</sub>. The X-ray diffraction analysis also showed a pure anatase phase for pure TiO<sub>2</sub>, 2-N-TiO<sub>2</sub>, and 4-N-TiO<sub>2</sub>. However, the crystalline phase transformed to amorphous for 6-N-TiO<sub>2</sub>. The crystallite size reduced from 14.16 to 9.76 nm upon increasing urea concentration. The band-gap energy of N-TiO<sub>2</sub> also decreased from 3.25 to 2.95 eV. Furthermore, the photocatalytic experiment was examined for the degradation of colorless and colored pollutants, such as salicylic acid (SA), methyl blue (MB), and rhodamine B (RhB). The results showed the photocatalytic activity of 2-N-TiO<sub>2</sub> exhibited an optimum efficiency compared to the 4-N-TiO<sub>2</sub> and 6-N-TiO<sub>2</sub>, for photocatalytic degradation of SA (<i>k</i> = 0.0265 min<sup>−1</sup>), MB (<i>k</i> = 0.0180 min<sup>−1</sup>) and RhB (<i>k</i> = 0.1071 min<sup>−1</sup>), under visible light irradiation. Therefore, the results suggest that crystallite size, urea (as an N dopant) concentration, and organic model pollutants were critical parameters for the photocatalytic activity of N-TiO<sub>2</sub> under visible irradiation.</p></div>\",\"PeriodicalId\":803,\"journal\":{\"name\":\"Transition Metal Chemistry\",\"volume\":\"49 5\",\"pages\":\"305 - 317\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transition Metal Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11243-024-00584-9\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transition Metal Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11243-024-00584-9","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
N-doped TiO2 for photocatalytic degradation of colorless and colored organic pollutants under visible light irradiation
Titanium dioxide (TiO2) can only be stimulated by UV light, making its real application for photocatalytic water treatments ineffective, particularly under sunlight and visible light irradiation. As a result, significant efforts have been conducted over the last decades to fabricate visible light-active TiO2 photocatalysts through band-gap engineering. Herein, nitrogen-doped titanium dioxide (N-TiO2) photocatalysts were effectively prepared by utilizing a simple sol–gel process with ethanol as a single solvent and urea as the nitrogen source under ambient temperature and pressure. The effects of urea concentration (0, 2, 4, 6 urea/TTIP mol ratio) on the optical, structural, morphological, and photocatalytic properties of the photocatalysts were investigated. SEM morphology revealed an aggregated nano-spherical shape in all samples. HR-TEM and SAED patterns showed an anatase phase of 2-N-TiO2. The X-ray diffraction analysis also showed a pure anatase phase for pure TiO2, 2-N-TiO2, and 4-N-TiO2. However, the crystalline phase transformed to amorphous for 6-N-TiO2. The crystallite size reduced from 14.16 to 9.76 nm upon increasing urea concentration. The band-gap energy of N-TiO2 also decreased from 3.25 to 2.95 eV. Furthermore, the photocatalytic experiment was examined for the degradation of colorless and colored pollutants, such as salicylic acid (SA), methyl blue (MB), and rhodamine B (RhB). The results showed the photocatalytic activity of 2-N-TiO2 exhibited an optimum efficiency compared to the 4-N-TiO2 and 6-N-TiO2, for photocatalytic degradation of SA (k = 0.0265 min−1), MB (k = 0.0180 min−1) and RhB (k = 0.1071 min−1), under visible light irradiation. Therefore, the results suggest that crystallite size, urea (as an N dopant) concentration, and organic model pollutants were critical parameters for the photocatalytic activity of N-TiO2 under visible irradiation.
期刊介绍:
Transition Metal Chemistry is an international journal designed to deal with all aspects of the subject embodied in the title: the preparation of transition metal-based molecular compounds of all kinds (including complexes of the Group 12 elements), their structural, physical, kinetic, catalytic and biological properties, their use in chemical synthesis as well as their application in the widest context, their role in naturally occurring systems etc.
Manuscripts submitted to the journal should be of broad appeal to the readership and for this reason, papers which are confined to more specialised studies such as the measurement of solution phase equilibria or thermal decomposition studies, or papers which include extensive material on f-block elements, or papers dealing with non-molecular materials, will not normally be considered for publication. Work describing new ligands or coordination geometries must provide sufficient evidence for the confident assignment of structural formulae; this will usually take the form of one or more X-ray crystal structures.