D. A. Syrtsova, A. Yu. Alentiev, A. Yu. Nikolaev, D. A. Kletnov, D. A. Chistyakova, R. Yu. Nikiforov, V. E. Ryzhikh, N. A. Belov, R. Sabouri, M. Demirci, C. Yildirim, S. B. Tantekin-Ersolmaz
{"title":"对基于聚酰亚胺的混合基质膜进行超临界二氧化碳处理以改善其气体传输性能","authors":"D. A. Syrtsova, A. Yu. Alentiev, A. Yu. Nikolaev, D. A. Kletnov, D. A. Chistyakova, R. Yu. Nikiforov, V. E. Ryzhikh, N. A. Belov, R. Sabouri, M. Demirci, C. Yildirim, S. B. Tantekin-Ersolmaz","doi":"10.1134/S2517751624020070","DOIUrl":null,"url":null,"abstract":"<p>In this work, mixed matrix membranes (MMMs) were obtained based on polyimides synthesized from a mixture of diethyltoluene diamine (DETDA) isomers and BPDA and 6FDA dianhydrides by introducing metal-organic framework compounds ZIF-8 and ZIF-67 in a concentration of up to 20 wt % in chloroform solution. The starting polyimides were synthesized by one-stage high-temperature catalytic polycondensation in a benzoic acid melt. The studied MMMs were treated with sc-CO<sub>2</sub> followed by decompression. The gas transport and gas selective properties of the original and modified membranes were studied. Experimental values of the effective coefficients of permeability and diffusion of gases for He, H<sub>2</sub>, O<sub>2</sub>, N<sub>2</sub>, CO<sub>2</sub>, CH<sub>4</sub> were obtained, and the effective solubility coefficients of these gases were calculated. It was found that treatment of the studied MMMs in sc-CO<sub>2</sub> can significantly increase the level of gas permeability of membranes with gas selectivity at the level of initial values, while the achieved effect of changing the permeability of membranes depends on the gas, the nature of the matrix, and the concentration of the introduced particles. It was found that the treatment effect persists over time with a slight decrease in permeability of gases, which remains at a level significantly higher than the initial values. The demonstrated effect of improving gas transport properties when treating MMMs based on polyimide matrices 6FDA-DETDA and BPDA-DETDA in sc-CO<sub>2</sub> can be used for further application of the proposed modification method in order to increase gas transport through MMMs based on other polymers, including highly permeable ones.</p>","PeriodicalId":700,"journal":{"name":"Membranes and Membrane Technologies","volume":"6 2","pages":"92 - 103"},"PeriodicalIF":2.0000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Supercritical CO2 Treatment of Mixed Matrix Membranes Based on Polyimides for Improvement of Their Gas Transport Properties\",\"authors\":\"D. A. Syrtsova, A. Yu. Alentiev, A. Yu. Nikolaev, D. A. Kletnov, D. A. Chistyakova, R. Yu. Nikiforov, V. E. Ryzhikh, N. A. Belov, R. Sabouri, M. Demirci, C. Yildirim, S. B. Tantekin-Ersolmaz\",\"doi\":\"10.1134/S2517751624020070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this work, mixed matrix membranes (MMMs) were obtained based on polyimides synthesized from a mixture of diethyltoluene diamine (DETDA) isomers and BPDA and 6FDA dianhydrides by introducing metal-organic framework compounds ZIF-8 and ZIF-67 in a concentration of up to 20 wt % in chloroform solution. The starting polyimides were synthesized by one-stage high-temperature catalytic polycondensation in a benzoic acid melt. The studied MMMs were treated with sc-CO<sub>2</sub> followed by decompression. The gas transport and gas selective properties of the original and modified membranes were studied. Experimental values of the effective coefficients of permeability and diffusion of gases for He, H<sub>2</sub>, O<sub>2</sub>, N<sub>2</sub>, CO<sub>2</sub>, CH<sub>4</sub> were obtained, and the effective solubility coefficients of these gases were calculated. It was found that treatment of the studied MMMs in sc-CO<sub>2</sub> can significantly increase the level of gas permeability of membranes with gas selectivity at the level of initial values, while the achieved effect of changing the permeability of membranes depends on the gas, the nature of the matrix, and the concentration of the introduced particles. It was found that the treatment effect persists over time with a slight decrease in permeability of gases, which remains at a level significantly higher than the initial values. The demonstrated effect of improving gas transport properties when treating MMMs based on polyimide matrices 6FDA-DETDA and BPDA-DETDA in sc-CO<sub>2</sub> can be used for further application of the proposed modification method in order to increase gas transport through MMMs based on other polymers, including highly permeable ones.</p>\",\"PeriodicalId\":700,\"journal\":{\"name\":\"Membranes and Membrane Technologies\",\"volume\":\"6 2\",\"pages\":\"92 - 103\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Membranes and Membrane Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S2517751624020070\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Membranes and Membrane Technologies","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S2517751624020070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Supercritical CO2 Treatment of Mixed Matrix Membranes Based on Polyimides for Improvement of Their Gas Transport Properties
In this work, mixed matrix membranes (MMMs) were obtained based on polyimides synthesized from a mixture of diethyltoluene diamine (DETDA) isomers and BPDA and 6FDA dianhydrides by introducing metal-organic framework compounds ZIF-8 and ZIF-67 in a concentration of up to 20 wt % in chloroform solution. The starting polyimides were synthesized by one-stage high-temperature catalytic polycondensation in a benzoic acid melt. The studied MMMs were treated with sc-CO2 followed by decompression. The gas transport and gas selective properties of the original and modified membranes were studied. Experimental values of the effective coefficients of permeability and diffusion of gases for He, H2, O2, N2, CO2, CH4 were obtained, and the effective solubility coefficients of these gases were calculated. It was found that treatment of the studied MMMs in sc-CO2 can significantly increase the level of gas permeability of membranes with gas selectivity at the level of initial values, while the achieved effect of changing the permeability of membranes depends on the gas, the nature of the matrix, and the concentration of the introduced particles. It was found that the treatment effect persists over time with a slight decrease in permeability of gases, which remains at a level significantly higher than the initial values. The demonstrated effect of improving gas transport properties when treating MMMs based on polyimide matrices 6FDA-DETDA and BPDA-DETDA in sc-CO2 can be used for further application of the proposed modification method in order to increase gas transport through MMMs based on other polymers, including highly permeable ones.
期刊介绍:
The journal Membranes and Membrane Technologies publishes original research articles and reviews devoted to scientific research and technological advancements in the field of membranes and membrane technologies, including the following main topics:novel membrane materials and creation of highly efficient polymeric and inorganic membranes;hybrid membranes, nanocomposites, and nanostructured membranes;aqueous and nonaqueous filtration processes (micro-, ultra-, and nanofiltration; reverse osmosis);gas separation;electromembrane processes and fuel cells;membrane pervaporation and membrane distillation;membrane catalysis and membrane reactors;water desalination and wastewater treatment;hybrid membrane processes;membrane sensors;membrane extraction and membrane emulsification;mathematical simulation of porous structures and membrane separation processes;membrane characterization;membrane technologies in industry (energy, mineral extraction, pharmaceutics and medicine, chemistry and petroleum chemistry, food industry, and others);membranes and protection of environment (“green chemistry”).The journal has been published in Russian already for several years, English translations of the content used to be integrated in the journal Petroleum Chemistry. This journal is a split off with additional topics.