浅水区的线性波浪在不平整的海底近岸处减速

IF 1 4区 工程技术 Q4 MECHANICS Fluid Dynamics Pub Date : 2024-05-08 DOI:10.1134/s0015462823603066
I. E. Melnikov, E. N. Pelinovsky
{"title":"浅水区的线性波浪在不平整的海底近岸处减速","authors":"I. E. Melnikov, E. N. Pelinovsky","doi":"10.1134/s0015462823603066","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The exact solutions to the system of equations of the linear theory of shallow water that represent travelling waves with some specific properties on the time propagation interval are discussed. These solutions are infinite when approaching the shore and finite when leaving for deep water. The solutions are obtained by reducing one-dimensional equations of shallow water to the Euler-Poisson-Darboux equation with negative integer coefficient ahead of the lower derivative. An analysis of the wave field dynamics is carried out. It is shown that the shape of a wave approaching the shore will be differentiated a certain number of times. This is illustrated by a number of examples. When the wave moves away from the shore, its profile is integrated. The solutions obtained within the framework of linear theory are valid only on a finite interval of variation in the depth.</p>","PeriodicalId":560,"journal":{"name":"Fluid Dynamics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Linear Waves on Shallow Water Slowing Down near the Shore over Uneven Bottom\",\"authors\":\"I. E. Melnikov, E. N. Pelinovsky\",\"doi\":\"10.1134/s0015462823603066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>The exact solutions to the system of equations of the linear theory of shallow water that represent travelling waves with some specific properties on the time propagation interval are discussed. These solutions are infinite when approaching the shore and finite when leaving for deep water. The solutions are obtained by reducing one-dimensional equations of shallow water to the Euler-Poisson-Darboux equation with negative integer coefficient ahead of the lower derivative. An analysis of the wave field dynamics is carried out. It is shown that the shape of a wave approaching the shore will be differentiated a certain number of times. This is illustrated by a number of examples. When the wave moves away from the shore, its profile is integrated. The solutions obtained within the framework of linear theory are valid only on a finite interval of variation in the depth.</p>\",\"PeriodicalId\":560,\"journal\":{\"name\":\"Fluid Dynamics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fluid Dynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1134/s0015462823603066\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluid Dynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1134/s0015462823603066","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 讨论了浅水线性理论方程组的精确解,这些解表示在时间传播间隔上具有某些特定性质的行波。这些解在接近岸边时是无限的,而在驶向深水区时是有限的。这些解是通过将浅水一元方程简化为下导数前带负整数系数的欧拉-泊松-达尔布方程得到的。对波场动力学进行了分析。结果表明,接近岸边的波浪形状会被微分一定次数。这可以通过一些例子来说明。当波浪远离海岸时,其轮廓将被整合。在线性理论框架内获得的解仅在深度变化的有限区间内有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Linear Waves on Shallow Water Slowing Down near the Shore over Uneven Bottom

Abstract

The exact solutions to the system of equations of the linear theory of shallow water that represent travelling waves with some specific properties on the time propagation interval are discussed. These solutions are infinite when approaching the shore and finite when leaving for deep water. The solutions are obtained by reducing one-dimensional equations of shallow water to the Euler-Poisson-Darboux equation with negative integer coefficient ahead of the lower derivative. An analysis of the wave field dynamics is carried out. It is shown that the shape of a wave approaching the shore will be differentiated a certain number of times. This is illustrated by a number of examples. When the wave moves away from the shore, its profile is integrated. The solutions obtained within the framework of linear theory are valid only on a finite interval of variation in the depth.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fluid Dynamics
Fluid Dynamics MECHANICS-PHYSICS, FLUIDS & PLASMAS
CiteScore
1.30
自引率
22.20%
发文量
61
审稿时长
6-12 weeks
期刊介绍: Fluid Dynamics is an international peer reviewed journal that publishes theoretical, computational, and experimental research on aeromechanics, hydrodynamics, plasma dynamics, underground hydrodynamics, and biomechanics of continuous media. Special attention is given to new trends developing at the leading edge of science, such as theory and application of multi-phase flows, chemically reactive flows, liquid and gas flows in electromagnetic fields, new hydrodynamical methods of increasing oil output, new approaches to the description of turbulent flows, etc.
期刊最新文献
Numerical Study on the Effect of the Nozzle Pressure Ratio on the Starting Characteristics of the Axisymmetric Divergent Dual Throat Nozzle Aerodynamic Analysis of Hypersonic Gliding Vehicles with Wide-Speed Range Based on the Cuspidal Waverider Dynamic Characteristics of the Droplet Impact on the Ultracold Surface under the Engine Cold Start Conditions Three-Dimensional Continuum Model of Lumen Formation in a Cluster of Cells Immersed in an Extracellular Matrix: The Role of Mechanical Factors Experimental and Numerical Investigation of the Cavitation-Induced Suction Effect
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1