Yu Song, Mingyu Gui, Kunli Zhang, Zexi Xu, Dongming Dai, Dezhi Kong
{"title":"关系多尺度度量学习,用于完成少量知识图谱","authors":"Yu Song, Mingyu Gui, Kunli Zhang, Zexi Xu, Dongming Dai, Dezhi Kong","doi":"10.1007/s10115-024-02083-w","DOIUrl":null,"url":null,"abstract":"<p>Few-shot knowledge graph completion (FKGC) refers to the task of inferring missing facts in a knowledge graph by utilizing a limited number of reference entities. Most FKGC methods assume a single similarity metric, which leads to a single feature space and makes it difficult to separate positive and negative samples effectively. Therefore, we propose a multi-scale relational metric network (MSRMN) specifically designed for FKGC, which integrates multiple scales of measurement methods to learn a more comprehensive and compact feature space. In this study, we design a complete neighbor random sampling algorithm to sample complete one-hop neighbor information, and aggregate both one-hop and multi-hop neighbor information to enhance entity representations. Then, MSRMN adaptively obtains prototype representations of relations and integrates three different scales of measurement methods to learn a more comprehensive feature space and a more discriminative feature mapping, enabling positive query entity pairs to obtain higher measurement scores. Evaluation of MSRMN on two public datasets for link prediction demonstrates that MSRMN attains top-performing outcomes across various few-shot sizes on the NELL dataset.</p>","PeriodicalId":54749,"journal":{"name":"Knowledge and Information Systems","volume":"14 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Relational multi-scale metric learning for few-shot knowledge graph completion\",\"authors\":\"Yu Song, Mingyu Gui, Kunli Zhang, Zexi Xu, Dongming Dai, Dezhi Kong\",\"doi\":\"10.1007/s10115-024-02083-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Few-shot knowledge graph completion (FKGC) refers to the task of inferring missing facts in a knowledge graph by utilizing a limited number of reference entities. Most FKGC methods assume a single similarity metric, which leads to a single feature space and makes it difficult to separate positive and negative samples effectively. Therefore, we propose a multi-scale relational metric network (MSRMN) specifically designed for FKGC, which integrates multiple scales of measurement methods to learn a more comprehensive and compact feature space. In this study, we design a complete neighbor random sampling algorithm to sample complete one-hop neighbor information, and aggregate both one-hop and multi-hop neighbor information to enhance entity representations. Then, MSRMN adaptively obtains prototype representations of relations and integrates three different scales of measurement methods to learn a more comprehensive feature space and a more discriminative feature mapping, enabling positive query entity pairs to obtain higher measurement scores. Evaluation of MSRMN on two public datasets for link prediction demonstrates that MSRMN attains top-performing outcomes across various few-shot sizes on the NELL dataset.</p>\",\"PeriodicalId\":54749,\"journal\":{\"name\":\"Knowledge and Information Systems\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Knowledge and Information Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10115-024-02083-w\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Knowledge and Information Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10115-024-02083-w","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Relational multi-scale metric learning for few-shot knowledge graph completion
Few-shot knowledge graph completion (FKGC) refers to the task of inferring missing facts in a knowledge graph by utilizing a limited number of reference entities. Most FKGC methods assume a single similarity metric, which leads to a single feature space and makes it difficult to separate positive and negative samples effectively. Therefore, we propose a multi-scale relational metric network (MSRMN) specifically designed for FKGC, which integrates multiple scales of measurement methods to learn a more comprehensive and compact feature space. In this study, we design a complete neighbor random sampling algorithm to sample complete one-hop neighbor information, and aggregate both one-hop and multi-hop neighbor information to enhance entity representations. Then, MSRMN adaptively obtains prototype representations of relations and integrates three different scales of measurement methods to learn a more comprehensive feature space and a more discriminative feature mapping, enabling positive query entity pairs to obtain higher measurement scores. Evaluation of MSRMN on two public datasets for link prediction demonstrates that MSRMN attains top-performing outcomes across various few-shot sizes on the NELL dataset.
期刊介绍:
Knowledge and Information Systems (KAIS) provides an international forum for researchers and professionals to share their knowledge and report new advances on all topics related to knowledge systems and advanced information systems. This monthly peer-reviewed archival journal publishes state-of-the-art research reports on emerging topics in KAIS, reviews of important techniques in related areas, and application papers of interest to a general readership.