Jie Wan, Gang Wang, Haibo Ren, Jiarui Huang, Sang Woo Joo
{"title":"合成具有优异挥发性有机化合物传感性能的多孔花状 SnO2/CdSnO3 微结构","authors":"Jie Wan, Gang Wang, Haibo Ren, Jiarui Huang, Sang Woo Joo","doi":"10.1007/s11706-024-0677-9","DOIUrl":null,"url":null,"abstract":"<div><p>Porous flower-like SnO<sub>2</sub>/CdSnO<sub>3</sub> microstructures self-assembled by uniform nanosheets were synthesized using a hydrothermal process followed by calcination, and the sensing performance was measured when a gas sensor, based on such microstructures, was exposed to various volatile organic compound (VOC) gases. The response value was found to reach as high as 100.1 when the SnO<sub>2</sub>/CdSnO<sub>3</sub> sensor was used to detect 100 ppm formaldehyde gas, much larger than those of other tested VOC gases, indicating the high gas sensitivity possessed by this sensor especially in the detection of formaldehyde gas. Meanwhile, the response/recovery process was fast with the response time and recovery time of only 13 and 21 s, respectively. The excellent gas sensing performance derive from the advantages of SnO<sub>2</sub>/CdSnO<sub>3</sub>, such as abundant n–n heterojunctions built at the interface, high available specific surface area, abundant porosity, large pore size, and rich reactive oxygen species, as well as joint effects arising from SnO<sub>2</sub> and CdSnO<sub>3</sub>, suggesting that such porous flower-like SnO<sub>2</sub>/CdSnO<sub>3</sub> microstructures composed of nanosheets have a high potential for developing gas sensors.</p></div>","PeriodicalId":572,"journal":{"name":"Frontiers of Materials Science","volume":"18 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis of porous flower-like SnO2/CdSnO3 microstructures with excellent sensing performances for volatile organic compounds\",\"authors\":\"Jie Wan, Gang Wang, Haibo Ren, Jiarui Huang, Sang Woo Joo\",\"doi\":\"10.1007/s11706-024-0677-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Porous flower-like SnO<sub>2</sub>/CdSnO<sub>3</sub> microstructures self-assembled by uniform nanosheets were synthesized using a hydrothermal process followed by calcination, and the sensing performance was measured when a gas sensor, based on such microstructures, was exposed to various volatile organic compound (VOC) gases. The response value was found to reach as high as 100.1 when the SnO<sub>2</sub>/CdSnO<sub>3</sub> sensor was used to detect 100 ppm formaldehyde gas, much larger than those of other tested VOC gases, indicating the high gas sensitivity possessed by this sensor especially in the detection of formaldehyde gas. Meanwhile, the response/recovery process was fast with the response time and recovery time of only 13 and 21 s, respectively. The excellent gas sensing performance derive from the advantages of SnO<sub>2</sub>/CdSnO<sub>3</sub>, such as abundant n–n heterojunctions built at the interface, high available specific surface area, abundant porosity, large pore size, and rich reactive oxygen species, as well as joint effects arising from SnO<sub>2</sub> and CdSnO<sub>3</sub>, suggesting that such porous flower-like SnO<sub>2</sub>/CdSnO<sub>3</sub> microstructures composed of nanosheets have a high potential for developing gas sensors.</p></div>\",\"PeriodicalId\":572,\"journal\":{\"name\":\"Frontiers of Materials Science\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11706-024-0677-9\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11706-024-0677-9","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Synthesis of porous flower-like SnO2/CdSnO3 microstructures with excellent sensing performances for volatile organic compounds
Porous flower-like SnO2/CdSnO3 microstructures self-assembled by uniform nanosheets were synthesized using a hydrothermal process followed by calcination, and the sensing performance was measured when a gas sensor, based on such microstructures, was exposed to various volatile organic compound (VOC) gases. The response value was found to reach as high as 100.1 when the SnO2/CdSnO3 sensor was used to detect 100 ppm formaldehyde gas, much larger than those of other tested VOC gases, indicating the high gas sensitivity possessed by this sensor especially in the detection of formaldehyde gas. Meanwhile, the response/recovery process was fast with the response time and recovery time of only 13 and 21 s, respectively. The excellent gas sensing performance derive from the advantages of SnO2/CdSnO3, such as abundant n–n heterojunctions built at the interface, high available specific surface area, abundant porosity, large pore size, and rich reactive oxygen species, as well as joint effects arising from SnO2 and CdSnO3, suggesting that such porous flower-like SnO2/CdSnO3 microstructures composed of nanosheets have a high potential for developing gas sensors.
期刊介绍:
Frontiers of Materials Science is a peer-reviewed international journal that publishes high quality reviews/mini-reviews, full-length research papers, and short Communications recording the latest pioneering studies on all aspects of materials science. It aims at providing a forum to promote communication and exchange between scientists in the worldwide materials science community.
The subjects are seen from international and interdisciplinary perspectives covering areas including (but not limited to):
Biomaterials including biomimetics and biomineralization;
Nano materials;
Polymers and composites;
New metallic materials;
Advanced ceramics;
Materials modeling and computation;
Frontier materials synthesis and characterization;
Novel methods for materials manufacturing;
Materials performance;
Materials applications in energy, information and biotechnology.