Sunwoo Rhee, Sungmin Lee, Kwonhoon Kim, Younghoon Cho
{"title":"基于 Thiran 滤波器的并网转换器分数延迟补偿","authors":"Sunwoo Rhee, Sungmin Lee, Kwonhoon Kim, Younghoon Cho","doi":"10.1007/s43236-024-00841-1","DOIUrl":null,"url":null,"abstract":"<p>This paper proposes fractional delay filter-based repetitive controllers (FDF-RCs) for grid-tied converters. Finite impulse response filters and infinite impulse response filters are used to estimate the fractional-order delay filter in a conventional repetitive controller. To do this, both the Lagrange filter-based repetitive controller (LF-RC) and Thiran filter-based repetitive controller (TF-RC) are utilized as FDF-RCs to compensate a fractional delay. The operating principle, the ladder structure, and the performance analysis of FDF-RCs are addressed. The simulation and the experimental results on a single-phase grid-tied converter verify the harmonic suppression ability and reference-tracking performance of the proposed FDF-RC under the grid frequency variation. Moreover, the advantages of the TF-RC over the LF-RC are discussed by comparing and analyzing the simulation and experimental results.</p>","PeriodicalId":50081,"journal":{"name":"Journal of Power Electronics","volume":"20 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thiran filter-based fractional delay compensation for grid-tied converters\",\"authors\":\"Sunwoo Rhee, Sungmin Lee, Kwonhoon Kim, Younghoon Cho\",\"doi\":\"10.1007/s43236-024-00841-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper proposes fractional delay filter-based repetitive controllers (FDF-RCs) for grid-tied converters. Finite impulse response filters and infinite impulse response filters are used to estimate the fractional-order delay filter in a conventional repetitive controller. To do this, both the Lagrange filter-based repetitive controller (LF-RC) and Thiran filter-based repetitive controller (TF-RC) are utilized as FDF-RCs to compensate a fractional delay. The operating principle, the ladder structure, and the performance analysis of FDF-RCs are addressed. The simulation and the experimental results on a single-phase grid-tied converter verify the harmonic suppression ability and reference-tracking performance of the proposed FDF-RC under the grid frequency variation. Moreover, the advantages of the TF-RC over the LF-RC are discussed by comparing and analyzing the simulation and experimental results.</p>\",\"PeriodicalId\":50081,\"journal\":{\"name\":\"Journal of Power Electronics\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Power Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s43236-024-00841-1\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Electronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s43236-024-00841-1","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Thiran filter-based fractional delay compensation for grid-tied converters
This paper proposes fractional delay filter-based repetitive controllers (FDF-RCs) for grid-tied converters. Finite impulse response filters and infinite impulse response filters are used to estimate the fractional-order delay filter in a conventional repetitive controller. To do this, both the Lagrange filter-based repetitive controller (LF-RC) and Thiran filter-based repetitive controller (TF-RC) are utilized as FDF-RCs to compensate a fractional delay. The operating principle, the ladder structure, and the performance analysis of FDF-RCs are addressed. The simulation and the experimental results on a single-phase grid-tied converter verify the harmonic suppression ability and reference-tracking performance of the proposed FDF-RC under the grid frequency variation. Moreover, the advantages of the TF-RC over the LF-RC are discussed by comparing and analyzing the simulation and experimental results.
期刊介绍:
The scope of Journal of Power Electronics includes all issues in the field of Power Electronics. Included are techniques for power converters, adjustable speed drives, renewable energy, power quality and utility applications, analysis, modeling and control, power devices and components, power electronics education, and other application.