{"title":"分析和设计电流抑制器,以减轻低压直流配电网络的浪涌电流","authors":"Chano Jeon, Kyung-Wook Heo, Jee-Hoon Jung","doi":"10.1007/s43236-024-00831-3","DOIUrl":null,"url":null,"abstract":"<p>This paper aims to analyze the inrush load current and develop an inrush current suppressor circuit optimized for a low-voltage DC (LVDC) distribution network. The connection of a substantial input capacitor in the DC load can induce a surge current, leading to significant issues in the LVDC distribution network, such as DC bus voltage drop and potential system damage. To address this issue, this paper presents the design of a voltage control system for a triple-active-bridge (TAB) converter in the LVDC distribution network, evaluating the need for the inrush current suppressor circuit. Control stability during the occurrence of the inrush current is analyzed using the small-signal model of the TAB converter. In addition, this paper proposes an inrush current suppressor circuit, presenting a design methodology to achieve the desired current suppression performance. Experiments are conducted on a laboratory-scale LVDC distribution network utilizing a 4-kW prototype converter to validate the performance of the suggested inrush current suppressor.</p>","PeriodicalId":50081,"journal":{"name":"Journal of Power Electronics","volume":"192 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis and design of a current suppressor to mitigate the inrush current for a low-voltage DC distribution network\",\"authors\":\"Chano Jeon, Kyung-Wook Heo, Jee-Hoon Jung\",\"doi\":\"10.1007/s43236-024-00831-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper aims to analyze the inrush load current and develop an inrush current suppressor circuit optimized for a low-voltage DC (LVDC) distribution network. The connection of a substantial input capacitor in the DC load can induce a surge current, leading to significant issues in the LVDC distribution network, such as DC bus voltage drop and potential system damage. To address this issue, this paper presents the design of a voltage control system for a triple-active-bridge (TAB) converter in the LVDC distribution network, evaluating the need for the inrush current suppressor circuit. Control stability during the occurrence of the inrush current is analyzed using the small-signal model of the TAB converter. In addition, this paper proposes an inrush current suppressor circuit, presenting a design methodology to achieve the desired current suppression performance. Experiments are conducted on a laboratory-scale LVDC distribution network utilizing a 4-kW prototype converter to validate the performance of the suggested inrush current suppressor.</p>\",\"PeriodicalId\":50081,\"journal\":{\"name\":\"Journal of Power Electronics\",\"volume\":\"192 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Power Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s43236-024-00831-3\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Electronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s43236-024-00831-3","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Analysis and design of a current suppressor to mitigate the inrush current for a low-voltage DC distribution network
This paper aims to analyze the inrush load current and develop an inrush current suppressor circuit optimized for a low-voltage DC (LVDC) distribution network. The connection of a substantial input capacitor in the DC load can induce a surge current, leading to significant issues in the LVDC distribution network, such as DC bus voltage drop and potential system damage. To address this issue, this paper presents the design of a voltage control system for a triple-active-bridge (TAB) converter in the LVDC distribution network, evaluating the need for the inrush current suppressor circuit. Control stability during the occurrence of the inrush current is analyzed using the small-signal model of the TAB converter. In addition, this paper proposes an inrush current suppressor circuit, presenting a design methodology to achieve the desired current suppression performance. Experiments are conducted on a laboratory-scale LVDC distribution network utilizing a 4-kW prototype converter to validate the performance of the suggested inrush current suppressor.
期刊介绍:
The scope of Journal of Power Electronics includes all issues in the field of Power Electronics. Included are techniques for power converters, adjustable speed drives, renewable energy, power quality and utility applications, analysis, modeling and control, power devices and components, power electronics education, and other application.