{"title":"引导式多样化概念挖掘器(GDCM):从文本中发现相关结构,获得管理启示","authors":"Dokyun “DK” Lee, Zhaoqi “ZQ” Cheng, Chengfeng Mao, Emaad Manzoor","doi":"10.1287/isre.2020.0494","DOIUrl":null,"url":null,"abstract":"The Guided Diverse Concept Miner (GDCM) is an innovative deep learning algorithm tailored for the extraction of managerially relevant concepts from textual data, emphasizing the autonomy in discovering insights without predefined labels or guidance. This tool stands out by embedding words, documents, and concepts within the same vector space, which simplifies the interpretation of unearthed concepts and ensures their alignment with managerial outcomes. Central to GDCM’s methodology is its capacity to focus on concepts that are highly correlated with user-specified managerial outcomes, termed guiding variables, thereby enhancing the relevance and application of extracted insights in decision-making processes. The algorithm’s design inherently promotes the diversity of the recovered concepts, ensuring a broad spectrum of insights. Through practical application in analyzing customer reviews related to online purchases, GDCM not only identified key concepts influencing conversion rates but also validated its findings against established theories and prior causal research. This validation underscores GDCM’s utility in generating actionable, diverse insights tailored to specific managerial contexts, marking a significant advancement in how businesses leverage textual data for strategic decisions.","PeriodicalId":48411,"journal":{"name":"Information Systems Research","volume":"26 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Guided Diverse Concept Miner (GDCM): Uncovering Relevant Constructs for Managerial Insights from Text\",\"authors\":\"Dokyun “DK” Lee, Zhaoqi “ZQ” Cheng, Chengfeng Mao, Emaad Manzoor\",\"doi\":\"10.1287/isre.2020.0494\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Guided Diverse Concept Miner (GDCM) is an innovative deep learning algorithm tailored for the extraction of managerially relevant concepts from textual data, emphasizing the autonomy in discovering insights without predefined labels or guidance. This tool stands out by embedding words, documents, and concepts within the same vector space, which simplifies the interpretation of unearthed concepts and ensures their alignment with managerial outcomes. Central to GDCM’s methodology is its capacity to focus on concepts that are highly correlated with user-specified managerial outcomes, termed guiding variables, thereby enhancing the relevance and application of extracted insights in decision-making processes. The algorithm’s design inherently promotes the diversity of the recovered concepts, ensuring a broad spectrum of insights. Through practical application in analyzing customer reviews related to online purchases, GDCM not only identified key concepts influencing conversion rates but also validated its findings against established theories and prior causal research. This validation underscores GDCM’s utility in generating actionable, diverse insights tailored to specific managerial contexts, marking a significant advancement in how businesses leverage textual data for strategic decisions.\",\"PeriodicalId\":48411,\"journal\":{\"name\":\"Information Systems Research\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Systems Research\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://doi.org/10.1287/isre.2020.0494\",\"RegionNum\":3,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"INFORMATION SCIENCE & LIBRARY SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Systems Research","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1287/isre.2020.0494","RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INFORMATION SCIENCE & LIBRARY SCIENCE","Score":null,"Total":0}
Guided Diverse Concept Miner (GDCM): Uncovering Relevant Constructs for Managerial Insights from Text
The Guided Diverse Concept Miner (GDCM) is an innovative deep learning algorithm tailored for the extraction of managerially relevant concepts from textual data, emphasizing the autonomy in discovering insights without predefined labels or guidance. This tool stands out by embedding words, documents, and concepts within the same vector space, which simplifies the interpretation of unearthed concepts and ensures their alignment with managerial outcomes. Central to GDCM’s methodology is its capacity to focus on concepts that are highly correlated with user-specified managerial outcomes, termed guiding variables, thereby enhancing the relevance and application of extracted insights in decision-making processes. The algorithm’s design inherently promotes the diversity of the recovered concepts, ensuring a broad spectrum of insights. Through practical application in analyzing customer reviews related to online purchases, GDCM not only identified key concepts influencing conversion rates but also validated its findings against established theories and prior causal research. This validation underscores GDCM’s utility in generating actionable, diverse insights tailored to specific managerial contexts, marking a significant advancement in how businesses leverage textual data for strategic decisions.
期刊介绍:
ISR (Information Systems Research) is a journal of INFORMS, the Institute for Operations Research and the Management Sciences. Information Systems Research is a leading international journal of theory, research, and intellectual development, focused on information systems in organizations, institutions, the economy, and society.