{"title":"具有稀疏性和降低秩的高维微分网络","authors":"Yao Wang, Cheng Wang, Binyan Jiang","doi":"10.1002/sta4.690","DOIUrl":null,"url":null,"abstract":"Differential network analysis plays a crucial role in capturing nuanced changes in conditional correlations between two samples. Under the high‐dimensional setting, the differential network, that is, the difference between the two precision matrices are usually stylized with sparse signals and some low‐rank latent factors. Recognizing the distinctions inherent in the precision matrices of such networks, we introduce a novel approach, termed ‘SR‐Network’ for the estimation of sparse and reduced‐rank differential networks. This method directly assesses the differential network by formulating a convex empirical loss function with ‐norm and nuclear norm penalties. The study establishes finite‐sample error bounds for parameter estimation and highlights the superior performance of the proposed method through extensive simulations and real data studies. This research significantly contributes to the advancement of methodologies for accurate analysis of differential networks, particularly in the context of structures characterized by sparsity and low‐rank features.","PeriodicalId":56159,"journal":{"name":"Stat","volume":"218 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High‐dimensional differential networks with sparsity and reduced‐rank\",\"authors\":\"Yao Wang, Cheng Wang, Binyan Jiang\",\"doi\":\"10.1002/sta4.690\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Differential network analysis plays a crucial role in capturing nuanced changes in conditional correlations between two samples. Under the high‐dimensional setting, the differential network, that is, the difference between the two precision matrices are usually stylized with sparse signals and some low‐rank latent factors. Recognizing the distinctions inherent in the precision matrices of such networks, we introduce a novel approach, termed ‘SR‐Network’ for the estimation of sparse and reduced‐rank differential networks. This method directly assesses the differential network by formulating a convex empirical loss function with ‐norm and nuclear norm penalties. The study establishes finite‐sample error bounds for parameter estimation and highlights the superior performance of the proposed method through extensive simulations and real data studies. This research significantly contributes to the advancement of methodologies for accurate analysis of differential networks, particularly in the context of structures characterized by sparsity and low‐rank features.\",\"PeriodicalId\":56159,\"journal\":{\"name\":\"Stat\",\"volume\":\"218 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stat\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/sta4.690\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stat","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/sta4.690","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
High‐dimensional differential networks with sparsity and reduced‐rank
Differential network analysis plays a crucial role in capturing nuanced changes in conditional correlations between two samples. Under the high‐dimensional setting, the differential network, that is, the difference between the two precision matrices are usually stylized with sparse signals and some low‐rank latent factors. Recognizing the distinctions inherent in the precision matrices of such networks, we introduce a novel approach, termed ‘SR‐Network’ for the estimation of sparse and reduced‐rank differential networks. This method directly assesses the differential network by formulating a convex empirical loss function with ‐norm and nuclear norm penalties. The study establishes finite‐sample error bounds for parameter estimation and highlights the superior performance of the proposed method through extensive simulations and real data studies. This research significantly contributes to the advancement of methodologies for accurate analysis of differential networks, particularly in the context of structures characterized by sparsity and low‐rank features.
StatDecision Sciences-Statistics, Probability and Uncertainty
CiteScore
1.10
自引率
0.00%
发文量
85
期刊介绍:
Stat is an innovative electronic journal for the rapid publication of novel and topical research results, publishing compact articles of the highest quality in all areas of statistical endeavour. Its purpose is to provide a means of rapid sharing of important new theoretical, methodological and applied research. Stat is a joint venture between the International Statistical Institute and Wiley-Blackwell.
Stat is characterised by:
• Speed - a high-quality review process that aims to reach a decision within 20 days of submission.
• Concision - a maximum article length of 10 pages of text, not including references.
• Supporting materials - inclusion of electronic supporting materials including graphs, video, software, data and images.
• Scope - addresses all areas of statistics and interdisciplinary areas.
Stat is a scientific journal for the international community of statisticians and researchers and practitioners in allied quantitative disciplines.