Aldo Eguiluz-Melendez, Carmen Rubio-Osornio, Artemio Rosiles-Abonce, Cesar Mendoza, Miryam Ramírez-Ordás, Romina Rivera-Cañas, Martha Tena-Suck, Juan Luis Gómez-Amador, Sergio Moreno-Jimenez
{"title":"肿瘤中的干细胞标记物及其与复发患者无进展生存期和总生存期的关系","authors":"Aldo Eguiluz-Melendez, Carmen Rubio-Osornio, Artemio Rosiles-Abonce, Cesar Mendoza, Miryam Ramírez-Ordás, Romina Rivera-Cañas, Martha Tena-Suck, Juan Luis Gómez-Amador, Sergio Moreno-Jimenez","doi":"10.2174/0115748928277672240429065526","DOIUrl":null,"url":null,"abstract":"Background: Gliomas account for 30% of primary brain tumors in adults, and despite the scientific progress in the field, recurrence is prevalent. Glioma Stem Cells (GSCs) can generate tumor cells in vivo and in vitro and they are associated with treatment resistance, tumor progression, and recurrence. Furthermore, the expression of SOX transcription factors (SOX1, SOX2, SOX9) in these cells is responsible for maintaining an oncogenic genotype and is associated with an aggressive tumor phenotype. The relationship between SOX transcription factors and their prognostic role in recurrent gliomas has not been described in detail. Therefore, we set out to describe the relationship between SOX expression and Progression-free Survival (PFS) and Overall Survival (OS) in patients with recurrent gliomas. Methods: In this observational study, we have retrospectively analyzed 69 patients, of which 20 met the inclusion criteria. The clinical, radiological, and histopathological findings have been described, and survival analysis has been performed according to SOX expression for PFS and OS. Results: We found SOX1, SOX2, and SOX9 to show a non-statistically significant trend with increasing histopathological grade, co-expressed with Ki67, a cell proliferation factor. Conclusion: There has been found an inversely proportional correlation between the degree of immunopositivity of SOX1 and OS. A higher SOX1 immunopositivity could predict a worse clinical prognosis. There has also been found an interaction between a pluripotent genotype (GSC) and cell proliferation.","PeriodicalId":20774,"journal":{"name":"Recent patents on anti-cancer drug discovery","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stem Cell Markers in Neoplasms and their Relationship with Progression-free and Overall Survival in Patients with Recurrence\",\"authors\":\"Aldo Eguiluz-Melendez, Carmen Rubio-Osornio, Artemio Rosiles-Abonce, Cesar Mendoza, Miryam Ramírez-Ordás, Romina Rivera-Cañas, Martha Tena-Suck, Juan Luis Gómez-Amador, Sergio Moreno-Jimenez\",\"doi\":\"10.2174/0115748928277672240429065526\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: Gliomas account for 30% of primary brain tumors in adults, and despite the scientific progress in the field, recurrence is prevalent. Glioma Stem Cells (GSCs) can generate tumor cells in vivo and in vitro and they are associated with treatment resistance, tumor progression, and recurrence. Furthermore, the expression of SOX transcription factors (SOX1, SOX2, SOX9) in these cells is responsible for maintaining an oncogenic genotype and is associated with an aggressive tumor phenotype. The relationship between SOX transcription factors and their prognostic role in recurrent gliomas has not been described in detail. Therefore, we set out to describe the relationship between SOX expression and Progression-free Survival (PFS) and Overall Survival (OS) in patients with recurrent gliomas. Methods: In this observational study, we have retrospectively analyzed 69 patients, of which 20 met the inclusion criteria. The clinical, radiological, and histopathological findings have been described, and survival analysis has been performed according to SOX expression for PFS and OS. Results: We found SOX1, SOX2, and SOX9 to show a non-statistically significant trend with increasing histopathological grade, co-expressed with Ki67, a cell proliferation factor. Conclusion: There has been found an inversely proportional correlation between the degree of immunopositivity of SOX1 and OS. A higher SOX1 immunopositivity could predict a worse clinical prognosis. There has also been found an interaction between a pluripotent genotype (GSC) and cell proliferation.\",\"PeriodicalId\":20774,\"journal\":{\"name\":\"Recent patents on anti-cancer drug discovery\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Recent patents on anti-cancer drug discovery\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0115748928277672240429065526\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent patents on anti-cancer drug discovery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115748928277672240429065526","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
Stem Cell Markers in Neoplasms and their Relationship with Progression-free and Overall Survival in Patients with Recurrence
Background: Gliomas account for 30% of primary brain tumors in adults, and despite the scientific progress in the field, recurrence is prevalent. Glioma Stem Cells (GSCs) can generate tumor cells in vivo and in vitro and they are associated with treatment resistance, tumor progression, and recurrence. Furthermore, the expression of SOX transcription factors (SOX1, SOX2, SOX9) in these cells is responsible for maintaining an oncogenic genotype and is associated with an aggressive tumor phenotype. The relationship between SOX transcription factors and their prognostic role in recurrent gliomas has not been described in detail. Therefore, we set out to describe the relationship between SOX expression and Progression-free Survival (PFS) and Overall Survival (OS) in patients with recurrent gliomas. Methods: In this observational study, we have retrospectively analyzed 69 patients, of which 20 met the inclusion criteria. The clinical, radiological, and histopathological findings have been described, and survival analysis has been performed according to SOX expression for PFS and OS. Results: We found SOX1, SOX2, and SOX9 to show a non-statistically significant trend with increasing histopathological grade, co-expressed with Ki67, a cell proliferation factor. Conclusion: There has been found an inversely proportional correlation between the degree of immunopositivity of SOX1 and OS. A higher SOX1 immunopositivity could predict a worse clinical prognosis. There has also been found an interaction between a pluripotent genotype (GSC) and cell proliferation.
期刊介绍:
Aims & Scope
Recent Patents on Anti-Cancer Drug Discovery publishes review and research articles that reflect or deal with studies in relation to a patent, application of reported patents in a study, discussion of comparison of results regarding application of a given patent, etc., and also guest edited thematic issues on recent patents in the field of anti-cancer drug discovery e.g. on novel bioactive compounds, analogs, targets & predictive biomarkers & drug efficacy biomarkers. The journal also publishes book reviews of eBooks and books on anti-cancer drug discovery. A selection of important and recent patents on anti-cancer drug discovery is also included in the journal. The journal is essential reading for all researchers involved in anti-cancer drug design and discovery. The journal also covers recent research (where patents have been registered) in fast emerging therapeutic areas/targets & therapeutic agents related to anti-cancer drug discovery.