Jianpeng Wu, Chengbing Yang, Wenya Shu, Yuxin Wang, Liyong Wang
{"title":"摩擦界面铜基粉末冶金材料的自修复特性及状态预测方法研究","authors":"Jianpeng Wu, Chengbing Yang, Wenya Shu, Yuxin Wang, Liyong Wang","doi":"10.1088/2051-672x/ad44b7","DOIUrl":null,"url":null,"abstract":"In high power density transmission systems, the friction and wear characteristic of copper based powder metallurgy materials is directly linked to working reliability. Moreover, these materials have frictional self-healing characteristic at the material interface. This paper focuses on exploring the healing mechanism of copper based powder metallurgy materials and conducts ‘damage-healing’ tests, proposing a method to characterize the self-healing characteristic. Subsequently, through comparative tests, the influence of temperature, speed, and pressure on the self-healing characteristics is analyzed. The results show that the increase in temperature reduces the furrow width and depth by 15.30% and 59.76%, respectively. Pressure has the greatest effect on surface roughness, reducing it by 67%. Meanwhile, this paper developed a PSO (Particle Swarm Optimization)-LSTM (Long Short-Term Memory) method to accurately predict the self-healing characterization parameters and self-healing time with small error (average 4.35%) and high correlation coefficient (<italic toggle=\"yes\">R</italic>\n<sup>2</sup>) (average 0.976). This study contributes to the development of interface repair technology for friction materials.","PeriodicalId":22028,"journal":{"name":"Surface Topography: Metrology and Properties","volume":"47 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on self-healing characteristic and state prediction method of the copper based powder metallurgy materials on friction interface\",\"authors\":\"Jianpeng Wu, Chengbing Yang, Wenya Shu, Yuxin Wang, Liyong Wang\",\"doi\":\"10.1088/2051-672x/ad44b7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In high power density transmission systems, the friction and wear characteristic of copper based powder metallurgy materials is directly linked to working reliability. Moreover, these materials have frictional self-healing characteristic at the material interface. This paper focuses on exploring the healing mechanism of copper based powder metallurgy materials and conducts ‘damage-healing’ tests, proposing a method to characterize the self-healing characteristic. Subsequently, through comparative tests, the influence of temperature, speed, and pressure on the self-healing characteristics is analyzed. The results show that the increase in temperature reduces the furrow width and depth by 15.30% and 59.76%, respectively. Pressure has the greatest effect on surface roughness, reducing it by 67%. Meanwhile, this paper developed a PSO (Particle Swarm Optimization)-LSTM (Long Short-Term Memory) method to accurately predict the self-healing characterization parameters and self-healing time with small error (average 4.35%) and high correlation coefficient (<italic toggle=\\\"yes\\\">R</italic>\\n<sup>2</sup>) (average 0.976). This study contributes to the development of interface repair technology for friction materials.\",\"PeriodicalId\":22028,\"journal\":{\"name\":\"Surface Topography: Metrology and Properties\",\"volume\":\"47 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surface Topography: Metrology and Properties\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1088/2051-672x/ad44b7\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Topography: Metrology and Properties","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/2051-672x/ad44b7","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Research on self-healing characteristic and state prediction method of the copper based powder metallurgy materials on friction interface
In high power density transmission systems, the friction and wear characteristic of copper based powder metallurgy materials is directly linked to working reliability. Moreover, these materials have frictional self-healing characteristic at the material interface. This paper focuses on exploring the healing mechanism of copper based powder metallurgy materials and conducts ‘damage-healing’ tests, proposing a method to characterize the self-healing characteristic. Subsequently, through comparative tests, the influence of temperature, speed, and pressure on the self-healing characteristics is analyzed. The results show that the increase in temperature reduces the furrow width and depth by 15.30% and 59.76%, respectively. Pressure has the greatest effect on surface roughness, reducing it by 67%. Meanwhile, this paper developed a PSO (Particle Swarm Optimization)-LSTM (Long Short-Term Memory) method to accurately predict the self-healing characterization parameters and self-healing time with small error (average 4.35%) and high correlation coefficient (R2) (average 0.976). This study contributes to the development of interface repair technology for friction materials.
期刊介绍:
An international forum for academics, industrialists and engineers to publish the latest research in surface topography measurement and characterisation, instrumentation development and the properties of surfaces.