高效率超过 30% 的透辉石-硅串联太阳能电池的协同衬底和添加剂工程技术

IF 38.6 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Joule Pub Date : 2024-06-19 DOI:10.1016/j.joule.2024.04.015
Deniz Turkay , Kerem Artuk , Xin-Yu Chin , Daniel A. Jacobs , Soo-Jin Moon , Arnaud Walter , Mounir Mensi , Gaëlle Andreatta , Nicolas Blondiaux , Huagui Lai , Fan Fu , Mathieu Boccard , Quentin Jeangros , Christian M. Wolff , Christophe Ballif
{"title":"高效率超过 30% 的透辉石-硅串联太阳能电池的协同衬底和添加剂工程技术","authors":"Deniz Turkay ,&nbsp;Kerem Artuk ,&nbsp;Xin-Yu Chin ,&nbsp;Daniel A. Jacobs ,&nbsp;Soo-Jin Moon ,&nbsp;Arnaud Walter ,&nbsp;Mounir Mensi ,&nbsp;Gaëlle Andreatta ,&nbsp;Nicolas Blondiaux ,&nbsp;Huagui Lai ,&nbsp;Fan Fu ,&nbsp;Mathieu Boccard ,&nbsp;Quentin Jeangros ,&nbsp;Christian M. Wolff ,&nbsp;Christophe Ballif","doi":"10.1016/j.joule.2024.04.015","DOIUrl":null,"url":null,"abstract":"<div><p>Perovskite-silicon (Si) tandem solar cells are the most prominent contenders to succeed single-junction Si cells that dominate the market today. Yet, to justify the added cost of inserting a perovskite cell on top of Si, these devices should first exhibit sufficiently high power conversion efficiencies (PCEs). Here, we present two key developments with a synergetic effect that boost the PCEs of our tandem devices with front-side flat Si wafers—the use of 2,3,4,5,6-pentafluorobenzylphosphonic acid (pFBPA) in the perovskite precursor ink that suppresses recombination near the perovskite/C<sub>60</sub> interface and the use of SiO<sub>2</sub> nanoparticles under the perovskite film that suppresses the enhanced number of pinholes and shunts introduced by pFBPA, while also allowing reliable use of Me-4PACz as a hole transport layer. Integrating these developments in an optically and electrically optimized tandem device (e.g., with a durable Si cell), reproducible PCEs of 30 ± 1%, and a certified maximum of 30.9% are achieved.</p></div>","PeriodicalId":343,"journal":{"name":"Joule","volume":"8 6","pages":"Pages 1735-1753"},"PeriodicalIF":38.6000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2542435124001995/pdfft?md5=6f82c9c671ff4874bbc665ab8c603638&pid=1-s2.0-S2542435124001995-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Synergetic substrate and additive engineering for over 30%-efficient perovskite-Si tandem solar cells\",\"authors\":\"Deniz Turkay ,&nbsp;Kerem Artuk ,&nbsp;Xin-Yu Chin ,&nbsp;Daniel A. Jacobs ,&nbsp;Soo-Jin Moon ,&nbsp;Arnaud Walter ,&nbsp;Mounir Mensi ,&nbsp;Gaëlle Andreatta ,&nbsp;Nicolas Blondiaux ,&nbsp;Huagui Lai ,&nbsp;Fan Fu ,&nbsp;Mathieu Boccard ,&nbsp;Quentin Jeangros ,&nbsp;Christian M. Wolff ,&nbsp;Christophe Ballif\",\"doi\":\"10.1016/j.joule.2024.04.015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Perovskite-silicon (Si) tandem solar cells are the most prominent contenders to succeed single-junction Si cells that dominate the market today. Yet, to justify the added cost of inserting a perovskite cell on top of Si, these devices should first exhibit sufficiently high power conversion efficiencies (PCEs). Here, we present two key developments with a synergetic effect that boost the PCEs of our tandem devices with front-side flat Si wafers—the use of 2,3,4,5,6-pentafluorobenzylphosphonic acid (pFBPA) in the perovskite precursor ink that suppresses recombination near the perovskite/C<sub>60</sub> interface and the use of SiO<sub>2</sub> nanoparticles under the perovskite film that suppresses the enhanced number of pinholes and shunts introduced by pFBPA, while also allowing reliable use of Me-4PACz as a hole transport layer. Integrating these developments in an optically and electrically optimized tandem device (e.g., with a durable Si cell), reproducible PCEs of 30 ± 1%, and a certified maximum of 30.9% are achieved.</p></div>\",\"PeriodicalId\":343,\"journal\":{\"name\":\"Joule\",\"volume\":\"8 6\",\"pages\":\"Pages 1735-1753\"},\"PeriodicalIF\":38.6000,\"publicationDate\":\"2024-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2542435124001995/pdfft?md5=6f82c9c671ff4874bbc665ab8c603638&pid=1-s2.0-S2542435124001995-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Joule\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2542435124001995\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Joule","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542435124001995","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

包晶石-硅(Si)串联太阳能电池是接替目前市场上占主导地位的单结硅电池的最主要竞争者。然而,为了证明在硅上插入包晶石电池所增加的成本是合理的,这些设备首先应表现出足够高的功率转换效率(PCE)。在此,我们将介绍两项具有协同效应的关键开发成果,这两项成果可提高我们采用正面平坦硅晶片的串联器件的 PCE--使用 2,3,4,5、6-五氟苯苄基膦酸 (pFBPA),可抑制包晶/C60 界面附近的重组;以及在包晶薄膜下使用 SiO2 纳米粒子,可抑制 pFBPA 带来的针孔和分流的增加,同时还能可靠地使用 Me-4PACz 作为空穴传输层。将这些开发成果集成到光学和电气优化的串联设备中(例如,采用耐用的硅电池),可实现 30 ± 1% 的可重复 PCE,经认证的最高 PCE 为 30.9%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Synergetic substrate and additive engineering for over 30%-efficient perovskite-Si tandem solar cells

Perovskite-silicon (Si) tandem solar cells are the most prominent contenders to succeed single-junction Si cells that dominate the market today. Yet, to justify the added cost of inserting a perovskite cell on top of Si, these devices should first exhibit sufficiently high power conversion efficiencies (PCEs). Here, we present two key developments with a synergetic effect that boost the PCEs of our tandem devices with front-side flat Si wafers—the use of 2,3,4,5,6-pentafluorobenzylphosphonic acid (pFBPA) in the perovskite precursor ink that suppresses recombination near the perovskite/C60 interface and the use of SiO2 nanoparticles under the perovskite film that suppresses the enhanced number of pinholes and shunts introduced by pFBPA, while also allowing reliable use of Me-4PACz as a hole transport layer. Integrating these developments in an optically and electrically optimized tandem device (e.g., with a durable Si cell), reproducible PCEs of 30 ± 1%, and a certified maximum of 30.9% are achieved.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Joule
Joule Energy-General Energy
CiteScore
53.10
自引率
2.00%
发文量
198
期刊介绍: Joule is a sister journal to Cell that focuses on research, analysis, and ideas related to sustainable energy. It aims to address the global challenge of the need for more sustainable energy solutions. Joule is a forward-looking journal that bridges disciplines and scales of energy research. It connects researchers and analysts working on scientific, technical, economic, policy, and social challenges related to sustainable energy. The journal covers a wide range of energy research, from fundamental laboratory studies on energy conversion and storage to global-level analysis. Joule aims to highlight and amplify the implications, challenges, and opportunities of novel energy research for different groups in the field.
期刊最新文献
Spin regulation through chirality in catalysis Battery health management in the era of big field data Anthracene-based energy storage Technoeconomic analysis of perovskite/silicon tandem solar modules De-doping engineering for efficient and heat-stable perovskite solar cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1