{"title":"在玉米的干旱响应过程中,依赖 Ca2+ 的 ZmCPK2 受依赖 Ca2+ 的 ZmCPK17 的抑制。","authors":"Xiaoying Hu, Jinkui Cheng, Minmin Lu, Tingting Fang, Yujuan Zhu, Zhen Li, Xiqing Wang, Yu Wang, Yan Guo, Shuhua Yang, Zhizhong Gong","doi":"10.1111/jipb.13675","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Calcium oscillations are induced by different stresses. Calcium-dependent protein kinases (CDPKs/CPKs) are one major group of the plant calcium decoders that are involved in various processes including drought response. Some CPKs are calcium-independent. Here, we identified ZmCPK2 as a negative regulator of drought resistance by screening an overexpression transgenic maize pool. We found that ZmCPK2 does not bind calcium, and its activity is mainly inhibited during short term abscisic acid (ABA) treatment, and dynamically changed in prolonged treatment. Interestingly, ZmCPK2 interacts with and is inhibited by calcium-dependent ZmCPK17, a positive regulator of drought resistance, which is activated by ABA. ZmCPK17 could prevent the nuclear localization of ZmCPK2 through phosphorylation of ZmCPK2T60. ZmCPK2 interacts with and phosphorylates and activates ZmYAB15, a negative transcriptional factor for drought resistance. Our results suggest that drought stress-induced Ca<sup>2+</sup> can be decoded directly by ZmCPK17 that inhibits ZmCPK2, thereby promoting plant adaptation to water deficit.</p></div>","PeriodicalId":195,"journal":{"name":"Journal of Integrative Plant Biology","volume":null,"pages":null},"PeriodicalIF":9.3000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ca2+-independent ZmCPK2 is inhibited by Ca2+-dependent ZmCPK17 during drought response in maize\",\"authors\":\"Xiaoying Hu, Jinkui Cheng, Minmin Lu, Tingting Fang, Yujuan Zhu, Zhen Li, Xiqing Wang, Yu Wang, Yan Guo, Shuhua Yang, Zhizhong Gong\",\"doi\":\"10.1111/jipb.13675\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Calcium oscillations are induced by different stresses. Calcium-dependent protein kinases (CDPKs/CPKs) are one major group of the plant calcium decoders that are involved in various processes including drought response. Some CPKs are calcium-independent. Here, we identified ZmCPK2 as a negative regulator of drought resistance by screening an overexpression transgenic maize pool. We found that ZmCPK2 does not bind calcium, and its activity is mainly inhibited during short term abscisic acid (ABA) treatment, and dynamically changed in prolonged treatment. Interestingly, ZmCPK2 interacts with and is inhibited by calcium-dependent ZmCPK17, a positive regulator of drought resistance, which is activated by ABA. ZmCPK17 could prevent the nuclear localization of ZmCPK2 through phosphorylation of ZmCPK2T60. ZmCPK2 interacts with and phosphorylates and activates ZmYAB15, a negative transcriptional factor for drought resistance. Our results suggest that drought stress-induced Ca<sup>2+</sup> can be decoded directly by ZmCPK17 that inhibits ZmCPK2, thereby promoting plant adaptation to water deficit.</p></div>\",\"PeriodicalId\":195,\"journal\":{\"name\":\"Journal of Integrative Plant Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.3000,\"publicationDate\":\"2024-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Integrative Plant Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jipb.13675\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Integrative Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jipb.13675","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Ca2+-independent ZmCPK2 is inhibited by Ca2+-dependent ZmCPK17 during drought response in maize
Calcium oscillations are induced by different stresses. Calcium-dependent protein kinases (CDPKs/CPKs) are one major group of the plant calcium decoders that are involved in various processes including drought response. Some CPKs are calcium-independent. Here, we identified ZmCPK2 as a negative regulator of drought resistance by screening an overexpression transgenic maize pool. We found that ZmCPK2 does not bind calcium, and its activity is mainly inhibited during short term abscisic acid (ABA) treatment, and dynamically changed in prolonged treatment. Interestingly, ZmCPK2 interacts with and is inhibited by calcium-dependent ZmCPK17, a positive regulator of drought resistance, which is activated by ABA. ZmCPK17 could prevent the nuclear localization of ZmCPK2 through phosphorylation of ZmCPK2T60. ZmCPK2 interacts with and phosphorylates and activates ZmYAB15, a negative transcriptional factor for drought resistance. Our results suggest that drought stress-induced Ca2+ can be decoded directly by ZmCPK17 that inhibits ZmCPK2, thereby promoting plant adaptation to water deficit.
期刊介绍:
Journal of Integrative Plant Biology is a leading academic journal reporting on the latest discoveries in plant biology.Enjoy the latest news and developments in the field, understand new and improved methods and research tools, and explore basic biological questions through reproducible experimental design, using genetic, biochemical, cell and molecular biological methods, and statistical analyses.