H Abedian Kalkhoran, J Zwaveling, F van Hunsel, A Kant
{"title":"利用电子健康记录加强潜在药物安全信号证据的创新方法。","authors":"H Abedian Kalkhoran, J Zwaveling, F van Hunsel, A Kant","doi":"10.1007/s10916-024-02070-2","DOIUrl":null,"url":null,"abstract":"<p><p>Reports from spontaneous reporting systems (SRS) are hypothesis generating. Additional evidence such as more reports is required to determine whether the generated drug-event associations are in fact safety signals. However, underreporting of adverse drug reactions (ADRs) delays signal detection. Through the use of natural language processing, different sources of real-world data can be used to proactively collect additional evidence for potential safety signals. This study aims to explore the feasibility of using Electronic Health Records (EHRs) to identify additional cases based on initial indications from spontaneous ADR reports, with the goal of strengthening the evidence base for potential safety signals. For two confirmed and two potential signals generated by the SRS of the Netherlands Pharmacovigilance Centre Lareb, targeted searches in the EHR of the Leiden University Medical Centre were performed using a text-mining based tool, CTcue. The search for additional cases was done by constructing and running queries in the structured and free-text fields of the EHRs. We identified at least five additional cases for the confirmed signals and one additional case for each potential safety signal. The majority of the identified cases for the confirmed signals were documented in the EHRs before signal detection by the Dutch Medicines Evaluation Board. The identified cases for the potential signals were reported to Lareb as further evidence for signal detection. Our findings highlight the feasibility of performing targeted searches in the EHR based on an underlying hypothesis to provide further evidence for signal generation.</p>","PeriodicalId":16338,"journal":{"name":"Journal of Medical Systems","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11098892/pdf/","citationCount":"0","resultStr":"{\"title\":\"An innovative method to strengthen evidence for potential drug safety signals using Electronic Health Records.\",\"authors\":\"H Abedian Kalkhoran, J Zwaveling, F van Hunsel, A Kant\",\"doi\":\"10.1007/s10916-024-02070-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Reports from spontaneous reporting systems (SRS) are hypothesis generating. Additional evidence such as more reports is required to determine whether the generated drug-event associations are in fact safety signals. However, underreporting of adverse drug reactions (ADRs) delays signal detection. Through the use of natural language processing, different sources of real-world data can be used to proactively collect additional evidence for potential safety signals. This study aims to explore the feasibility of using Electronic Health Records (EHRs) to identify additional cases based on initial indications from spontaneous ADR reports, with the goal of strengthening the evidence base for potential safety signals. For two confirmed and two potential signals generated by the SRS of the Netherlands Pharmacovigilance Centre Lareb, targeted searches in the EHR of the Leiden University Medical Centre were performed using a text-mining based tool, CTcue. The search for additional cases was done by constructing and running queries in the structured and free-text fields of the EHRs. We identified at least five additional cases for the confirmed signals and one additional case for each potential safety signal. The majority of the identified cases for the confirmed signals were documented in the EHRs before signal detection by the Dutch Medicines Evaluation Board. The identified cases for the potential signals were reported to Lareb as further evidence for signal detection. Our findings highlight the feasibility of performing targeted searches in the EHR based on an underlying hypothesis to provide further evidence for signal generation.</p>\",\"PeriodicalId\":16338,\"journal\":{\"name\":\"Journal of Medical Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11098892/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medical Systems\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10916-024-02070-2\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Systems","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10916-024-02070-2","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
An innovative method to strengthen evidence for potential drug safety signals using Electronic Health Records.
Reports from spontaneous reporting systems (SRS) are hypothesis generating. Additional evidence such as more reports is required to determine whether the generated drug-event associations are in fact safety signals. However, underreporting of adverse drug reactions (ADRs) delays signal detection. Through the use of natural language processing, different sources of real-world data can be used to proactively collect additional evidence for potential safety signals. This study aims to explore the feasibility of using Electronic Health Records (EHRs) to identify additional cases based on initial indications from spontaneous ADR reports, with the goal of strengthening the evidence base for potential safety signals. For two confirmed and two potential signals generated by the SRS of the Netherlands Pharmacovigilance Centre Lareb, targeted searches in the EHR of the Leiden University Medical Centre were performed using a text-mining based tool, CTcue. The search for additional cases was done by constructing and running queries in the structured and free-text fields of the EHRs. We identified at least five additional cases for the confirmed signals and one additional case for each potential safety signal. The majority of the identified cases for the confirmed signals were documented in the EHRs before signal detection by the Dutch Medicines Evaluation Board. The identified cases for the potential signals were reported to Lareb as further evidence for signal detection. Our findings highlight the feasibility of performing targeted searches in the EHR based on an underlying hypothesis to provide further evidence for signal generation.
期刊介绍:
Journal of Medical Systems provides a forum for the presentation and discussion of the increasingly extensive applications of new systems techniques and methods in hospital clinic and physician''s office administration; pathology radiology and pharmaceutical delivery systems; medical records storage and retrieval; and ancillary patient-support systems. The journal publishes informative articles essays and studies across the entire scale of medical systems from large hospital programs to novel small-scale medical services. Education is an integral part of this amalgamation of sciences and selected articles are published in this area. Since existing medical systems are constantly being modified to fit particular circumstances and to solve specific problems the journal includes a special section devoted to status reports on current installations.