{"title":"M6A 介导的 hsa_circ_0061179 通过 miR-143-3p/TIMELESS 抑制卵巢癌细胞的 DNA 损伤。","authors":"Yuhong Zhang, Yuhong Wu, Xiu Shi, Hongmei Ding, Ying Zhou, Hanqing Chen, Fangrong Shen, Youguo Chen, Jinhua Zhou, Dingjie Zhou, Juan Wang","doi":"10.1002/mc.23744","DOIUrl":null,"url":null,"abstract":"<p><p>Ovarian cancer (OC) is among the most common and deadly solid malignancies in women. Despite many advances in OC research, the incidence of OC continues to rise, and its pathogenesis remains largely unknown. Herein, we elucidated the function of hsa_circ_0061179 in OC. The levels of hsa_circ_0061179, miR-143-3p, TIMELESS, and DNA damage repair-related proteins in OC or normal ovarian tissues and cells were measured using real-time quantitative polymerase chain reaction and immunoblotting. The biological effects of hsa_circ_0061179 and miR-143-3p on proliferation, clone formation, DNA damage, and apoptosis of OC cells were detected by the cell counting kit-8 assay, 5-methylethyl-2'-deoxyuridine, flow cytometry, the comet assay, and immunofluorescence staining combined with the confocal microscopy. The interaction among hsa_circ_0061179, miR-143-3p, and TIMELESS was validated by the luciferase reporter assay. Mice tumor xenograft models were used to evaluate the influence of hsa_circ_0061179 on OC growth in vivo. We found that human OC biospecimens expressed higher levels of hsa_circ_0061179 and lower levels of miR-143-3p. Hsa_circ_0061179 was found to bind with miR-143-3p, which directly targets TIMELESS. Hsa_circ_0061179 knockdown or miR-143-3p overexpression suppressed the proliferation and clone formation of OC cells and increased DNA damage and apoptosis of OC cells via the miR-143-3p/TIMELESS axis. Furthermore, we demonstrated that METTL3 could direct the formation of has_circ_0061179 through a specific m6A modification site. YTHDC1 facilitated the cytoplasmic transfer of has_circ_0061179 by directly binding to the modified m6A site. Our findings suggest that hsa_circ_0061179 acts as the sponge of miR-143-3p to activate TIMELESS signaling and inhibits DNA damage and apoptosis in OC cells.</p>","PeriodicalId":19003,"journal":{"name":"Molecular Carcinogenesis","volume":" ","pages":"1542-1558"},"PeriodicalIF":3.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"M6A-mediated hsa_circ_0061179 inhibits DNA damage in ovarian cancer cells via miR-143-3p/TIMELESS.\",\"authors\":\"Yuhong Zhang, Yuhong Wu, Xiu Shi, Hongmei Ding, Ying Zhou, Hanqing Chen, Fangrong Shen, Youguo Chen, Jinhua Zhou, Dingjie Zhou, Juan Wang\",\"doi\":\"10.1002/mc.23744\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ovarian cancer (OC) is among the most common and deadly solid malignancies in women. Despite many advances in OC research, the incidence of OC continues to rise, and its pathogenesis remains largely unknown. Herein, we elucidated the function of hsa_circ_0061179 in OC. The levels of hsa_circ_0061179, miR-143-3p, TIMELESS, and DNA damage repair-related proteins in OC or normal ovarian tissues and cells were measured using real-time quantitative polymerase chain reaction and immunoblotting. The biological effects of hsa_circ_0061179 and miR-143-3p on proliferation, clone formation, DNA damage, and apoptosis of OC cells were detected by the cell counting kit-8 assay, 5-methylethyl-2'-deoxyuridine, flow cytometry, the comet assay, and immunofluorescence staining combined with the confocal microscopy. The interaction among hsa_circ_0061179, miR-143-3p, and TIMELESS was validated by the luciferase reporter assay. Mice tumor xenograft models were used to evaluate the influence of hsa_circ_0061179 on OC growth in vivo. We found that human OC biospecimens expressed higher levels of hsa_circ_0061179 and lower levels of miR-143-3p. Hsa_circ_0061179 was found to bind with miR-143-3p, which directly targets TIMELESS. Hsa_circ_0061179 knockdown or miR-143-3p overexpression suppressed the proliferation and clone formation of OC cells and increased DNA damage and apoptosis of OC cells via the miR-143-3p/TIMELESS axis. Furthermore, we demonstrated that METTL3 could direct the formation of has_circ_0061179 through a specific m6A modification site. YTHDC1 facilitated the cytoplasmic transfer of has_circ_0061179 by directly binding to the modified m6A site. Our findings suggest that hsa_circ_0061179 acts as the sponge of miR-143-3p to activate TIMELESS signaling and inhibits DNA damage and apoptosis in OC cells.</p>\",\"PeriodicalId\":19003,\"journal\":{\"name\":\"Molecular Carcinogenesis\",\"volume\":\" \",\"pages\":\"1542-1558\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Carcinogenesis\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/mc.23744\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Carcinogenesis","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/mc.23744","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/15 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
M6A-mediated hsa_circ_0061179 inhibits DNA damage in ovarian cancer cells via miR-143-3p/TIMELESS.
Ovarian cancer (OC) is among the most common and deadly solid malignancies in women. Despite many advances in OC research, the incidence of OC continues to rise, and its pathogenesis remains largely unknown. Herein, we elucidated the function of hsa_circ_0061179 in OC. The levels of hsa_circ_0061179, miR-143-3p, TIMELESS, and DNA damage repair-related proteins in OC or normal ovarian tissues and cells were measured using real-time quantitative polymerase chain reaction and immunoblotting. The biological effects of hsa_circ_0061179 and miR-143-3p on proliferation, clone formation, DNA damage, and apoptosis of OC cells were detected by the cell counting kit-8 assay, 5-methylethyl-2'-deoxyuridine, flow cytometry, the comet assay, and immunofluorescence staining combined with the confocal microscopy. The interaction among hsa_circ_0061179, miR-143-3p, and TIMELESS was validated by the luciferase reporter assay. Mice tumor xenograft models were used to evaluate the influence of hsa_circ_0061179 on OC growth in vivo. We found that human OC biospecimens expressed higher levels of hsa_circ_0061179 and lower levels of miR-143-3p. Hsa_circ_0061179 was found to bind with miR-143-3p, which directly targets TIMELESS. Hsa_circ_0061179 knockdown or miR-143-3p overexpression suppressed the proliferation and clone formation of OC cells and increased DNA damage and apoptosis of OC cells via the miR-143-3p/TIMELESS axis. Furthermore, we demonstrated that METTL3 could direct the formation of has_circ_0061179 through a specific m6A modification site. YTHDC1 facilitated the cytoplasmic transfer of has_circ_0061179 by directly binding to the modified m6A site. Our findings suggest that hsa_circ_0061179 acts as the sponge of miR-143-3p to activate TIMELESS signaling and inhibits DNA damage and apoptosis in OC cells.
期刊介绍:
Molecular Carcinogenesis publishes articles describing discoveries in basic and clinical science of the mechanisms involved in chemical-, environmental-, physical (e.g., radiation, trauma)-, infection and inflammation-associated cancer development, basic mechanisms of cancer prevention and therapy, the function of oncogenes and tumors suppressors, and the role of biomarkers for cancer risk prediction, molecular diagnosis and prognosis.