Arne Janssens , Bert Vaes , Gijs Van Pottelbergh , Pieter J.K. Libin , Thomas Neyens
{"title":"利用初级保健登记数据绘制基于模型的疾病分布图","authors":"Arne Janssens , Bert Vaes , Gijs Van Pottelbergh , Pieter J.K. Libin , Thomas Neyens","doi":"10.1016/j.sste.2024.100654","DOIUrl":null,"url":null,"abstract":"<div><h3>Background:</h3><p>Spatial modeling of disease risk using primary care registry data is promising for public health surveillance. However, it remains unclear to which extent challenges such as spatially disproportionate sampling and practice-specific reporting variation affect statistical inference.</p></div><div><h3>Methods:</h3><p>Using lower respiratory tract infection data from the INTEGO registry, modeled with a logistic model incorporating patient characteristics, a spatially structured random effect at municipality level, and an unstructured random effect at practice level, we conducted a case and simulation study to assess the impact of these challenges on spatial trend estimation.</p></div><div><h3>Results:</h3><p>Even with spatial imbalance and practice-specific reporting variation, the model performed well. Performance improved with increasing spatial sample balance and decreasing practice-specific variation.</p></div><div><h3>Conclusion:</h3><p>Our findings indicate that, with correction for reporting efforts, primary care registries are valuable for spatial trend estimation. The diversity of patient locations within practice populations plays an important role.</p></div>","PeriodicalId":46645,"journal":{"name":"Spatial and Spatio-Temporal Epidemiology","volume":"49 ","pages":"Article 100654"},"PeriodicalIF":2.1000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1877584524000212/pdfft?md5=2abc0e361764c74dc95a5694546fab63&pid=1-s2.0-S1877584524000212-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Model-based disease mapping using primary care registry data\",\"authors\":\"Arne Janssens , Bert Vaes , Gijs Van Pottelbergh , Pieter J.K. Libin , Thomas Neyens\",\"doi\":\"10.1016/j.sste.2024.100654\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background:</h3><p>Spatial modeling of disease risk using primary care registry data is promising for public health surveillance. However, it remains unclear to which extent challenges such as spatially disproportionate sampling and practice-specific reporting variation affect statistical inference.</p></div><div><h3>Methods:</h3><p>Using lower respiratory tract infection data from the INTEGO registry, modeled with a logistic model incorporating patient characteristics, a spatially structured random effect at municipality level, and an unstructured random effect at practice level, we conducted a case and simulation study to assess the impact of these challenges on spatial trend estimation.</p></div><div><h3>Results:</h3><p>Even with spatial imbalance and practice-specific reporting variation, the model performed well. Performance improved with increasing spatial sample balance and decreasing practice-specific variation.</p></div><div><h3>Conclusion:</h3><p>Our findings indicate that, with correction for reporting efforts, primary care registries are valuable for spatial trend estimation. The diversity of patient locations within practice populations plays an important role.</p></div>\",\"PeriodicalId\":46645,\"journal\":{\"name\":\"Spatial and Spatio-Temporal Epidemiology\",\"volume\":\"49 \",\"pages\":\"Article 100654\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1877584524000212/pdfft?md5=2abc0e361764c74dc95a5694546fab63&pid=1-s2.0-S1877584524000212-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Spatial and Spatio-Temporal Epidemiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1877584524000212\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spatial and Spatio-Temporal Epidemiology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1877584524000212","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
Model-based disease mapping using primary care registry data
Background:
Spatial modeling of disease risk using primary care registry data is promising for public health surveillance. However, it remains unclear to which extent challenges such as spatially disproportionate sampling and practice-specific reporting variation affect statistical inference.
Methods:
Using lower respiratory tract infection data from the INTEGO registry, modeled with a logistic model incorporating patient characteristics, a spatially structured random effect at municipality level, and an unstructured random effect at practice level, we conducted a case and simulation study to assess the impact of these challenges on spatial trend estimation.
Results:
Even with spatial imbalance and practice-specific reporting variation, the model performed well. Performance improved with increasing spatial sample balance and decreasing practice-specific variation.
Conclusion:
Our findings indicate that, with correction for reporting efforts, primary care registries are valuable for spatial trend estimation. The diversity of patient locations within practice populations plays an important role.