Temur Maksudov , Mingjie He , Spyros Doukas , Mohamad Insan Nugraha , Begimai Adilbekova , Hendrik Faber , Linqu Luo , Renqian Zhou , Osman M. Bakr , Wojciech Ogieglo , Ingo Pinnau , George T. Harrison , Dipti R. Naphade , Zhaoheng Ling , Elefterios Lidorikis , Shadi Fatayer , Martin Heeney , Furkan H. Isikgor , Thomas D. Anthopoulos
{"title":"23.6 % 通过重组层工程实现高效的过氧化物有机串联光伏技术","authors":"Temur Maksudov , Mingjie He , Spyros Doukas , Mohamad Insan Nugraha , Begimai Adilbekova , Hendrik Faber , Linqu Luo , Renqian Zhou , Osman M. Bakr , Wojciech Ogieglo , Ingo Pinnau , George T. Harrison , Dipti R. Naphade , Zhaoheng Ling , Elefterios Lidorikis , Shadi Fatayer , Martin Heeney , Furkan H. Isikgor , Thomas D. Anthopoulos","doi":"10.1016/j.mser.2024.100802","DOIUrl":null,"url":null,"abstract":"<div><p>Recombination layers are crucial in achieving high power conversion efficiency (PCE) in tandem solar cells. Here, we report the development and optimization of recombination junctions for high PCE perovskite-organic tandem solar cells (PO-TSCs). We choose a wide bandgap perovskite (1.79 eV) for the front subcell and a narrow bandgap (1.36 eV) organic bulk heterojunction (BHJ) for the rear subcell. The optimal thicknesses of the perovskite and organic layers were determined to be 260 and 100 nm, respectively, based on the analysis of Transfer-Matrix optical simulations. Our results demonstrate that the optimal recombination layer consists of an ultrathin layer of indium zinc oxide IZO (∼ 2 nm) deposited on MoO<sub>x</sub>/2PACz, which delivers a PCE of 23.6 %. This high PCE is attributed to the high transparency of the recombination layer in the NIR spectra region and the low sheet resistance of IZO. Furthermore, we provide a theoretical analysis of the potential efficiency of PO-TSCs as a function of front and rear subcells and predict a maximum theoretical PCE value of more than 36 %. Our work highlights the importance of selecting the proper recombination layer design for achieving high-performance PO-TSCs.</p></div>","PeriodicalId":386,"journal":{"name":"Materials Science and Engineering: R: Reports","volume":"159 ","pages":"Article 100802"},"PeriodicalIF":31.6000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"23.6 % Efficient perovskite-organic tandem photovoltaics enabled by recombination layer engineering\",\"authors\":\"Temur Maksudov , Mingjie He , Spyros Doukas , Mohamad Insan Nugraha , Begimai Adilbekova , Hendrik Faber , Linqu Luo , Renqian Zhou , Osman M. Bakr , Wojciech Ogieglo , Ingo Pinnau , George T. Harrison , Dipti R. Naphade , Zhaoheng Ling , Elefterios Lidorikis , Shadi Fatayer , Martin Heeney , Furkan H. Isikgor , Thomas D. Anthopoulos\",\"doi\":\"10.1016/j.mser.2024.100802\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Recombination layers are crucial in achieving high power conversion efficiency (PCE) in tandem solar cells. Here, we report the development and optimization of recombination junctions for high PCE perovskite-organic tandem solar cells (PO-TSCs). We choose a wide bandgap perovskite (1.79 eV) for the front subcell and a narrow bandgap (1.36 eV) organic bulk heterojunction (BHJ) for the rear subcell. The optimal thicknesses of the perovskite and organic layers were determined to be 260 and 100 nm, respectively, based on the analysis of Transfer-Matrix optical simulations. Our results demonstrate that the optimal recombination layer consists of an ultrathin layer of indium zinc oxide IZO (∼ 2 nm) deposited on MoO<sub>x</sub>/2PACz, which delivers a PCE of 23.6 %. This high PCE is attributed to the high transparency of the recombination layer in the NIR spectra region and the low sheet resistance of IZO. Furthermore, we provide a theoretical analysis of the potential efficiency of PO-TSCs as a function of front and rear subcells and predict a maximum theoretical PCE value of more than 36 %. Our work highlights the importance of selecting the proper recombination layer design for achieving high-performance PO-TSCs.</p></div>\",\"PeriodicalId\":386,\"journal\":{\"name\":\"Materials Science and Engineering: R: Reports\",\"volume\":\"159 \",\"pages\":\"Article 100802\"},\"PeriodicalIF\":31.6000,\"publicationDate\":\"2024-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science and Engineering: R: Reports\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0927796X24000329\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: R: Reports","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927796X24000329","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
23.6 % Efficient perovskite-organic tandem photovoltaics enabled by recombination layer engineering
Recombination layers are crucial in achieving high power conversion efficiency (PCE) in tandem solar cells. Here, we report the development and optimization of recombination junctions for high PCE perovskite-organic tandem solar cells (PO-TSCs). We choose a wide bandgap perovskite (1.79 eV) for the front subcell and a narrow bandgap (1.36 eV) organic bulk heterojunction (BHJ) for the rear subcell. The optimal thicknesses of the perovskite and organic layers were determined to be 260 and 100 nm, respectively, based on the analysis of Transfer-Matrix optical simulations. Our results demonstrate that the optimal recombination layer consists of an ultrathin layer of indium zinc oxide IZO (∼ 2 nm) deposited on MoOx/2PACz, which delivers a PCE of 23.6 %. This high PCE is attributed to the high transparency of the recombination layer in the NIR spectra region and the low sheet resistance of IZO. Furthermore, we provide a theoretical analysis of the potential efficiency of PO-TSCs as a function of front and rear subcells and predict a maximum theoretical PCE value of more than 36 %. Our work highlights the importance of selecting the proper recombination layer design for achieving high-performance PO-TSCs.
期刊介绍:
Materials Science & Engineering R: Reports is a journal that covers a wide range of topics in the field of materials science and engineering. It publishes both experimental and theoretical research papers, providing background information and critical assessments on various topics. The journal aims to publish high-quality and novel research papers and reviews.
The subject areas covered by the journal include Materials Science (General), Electronic Materials, Optical Materials, and Magnetic Materials. In addition to regular issues, the journal also publishes special issues on key themes in the field of materials science, including Energy Materials, Materials for Health, Materials Discovery, Innovation for High Value Manufacturing, and Sustainable Materials development.