通过建立电子/质子通路增强质子交换膜电解水能力

Liyan Zhu , Hao Zhang , Aojie Zhang , Tian Tian , Yuhan Shen , Mingjuan Wu , Neng Li , Haolin Tang
{"title":"通过建立电子/质子通路增强质子交换膜电解水能力","authors":"Liyan Zhu ,&nbsp;Hao Zhang ,&nbsp;Aojie Zhang ,&nbsp;Tian Tian ,&nbsp;Yuhan Shen ,&nbsp;Mingjuan Wu ,&nbsp;Neng Li ,&nbsp;Haolin Tang","doi":"10.1016/j.apmate.2024.100203","DOIUrl":null,"url":null,"abstract":"<div><p>Proton exchange membrane water electrolysis (PEMWE) plays a critical role in practical hydrogen production. Except for the electrode activities, the widespread deployment of PEMWE is severely obstructed by the poor electron-proton permeability across the catalyst layer (CL) and the inefficient transport structure. In this work, the PEDOT:F (Poly(3,4-ethylenedioxythiophene):perfluorosulfonic acid) ionomers with mixed proton-electron conductor (MPEC) were fabricated, which allows for a homogeneous anodic CL structure and the construction of a highly efficient triple-phase interface. The PEDOT:F exhibits strong perfluorosulfonic acid (PFSA) side chain extensibility, enabling the formation of large hydrophilic ion clusters that form proton-electron transport channels within the CL networks, thus contributing to the surface reactant water adsorption. The PEMWE device employing membrane electrode assembly (MEA) prepared by PEDOT:F-2 demonstrates a competitive voltage of 1.713 ​V under a water-splitting current of 2 ​A ​cm<sup>−2</sup> (1.746 ​V at 2A cm<sup>−2</sup> for MEA prepared by Nafion D520), along with exceptional long-term stability. Meanwhile, the MEA prepared by PEDOT:F-2 also exhibits lower ohmic resistance, which is reduced by 23.4 ​% and 17.6 ​% at 0.1 ​A ​cm<sup>−2</sup> and 1.5 ​A ​cm<sup>−2</sup>, respectively, as compared to the MEA prepared by D520. The augmentation can be ascribed to the superior proton and electron conductivity inherent in PEDOT:F, coupled with its remarkable structural stability. This characteristic enables expeditious mass transfer during electrolytic reactions, thereby enhancing the performance of PEMWE devices.</p></div>","PeriodicalId":7283,"journal":{"name":"Advanced Powder Materials","volume":"3 4","pages":"Article 100203"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772834X24000344/pdfft?md5=36f1d7765a8be5d8d664a3f896a74748&pid=1-s2.0-S2772834X24000344-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Enhancing proton exchange membrane water electrolysis by building electron/proton pathways\",\"authors\":\"Liyan Zhu ,&nbsp;Hao Zhang ,&nbsp;Aojie Zhang ,&nbsp;Tian Tian ,&nbsp;Yuhan Shen ,&nbsp;Mingjuan Wu ,&nbsp;Neng Li ,&nbsp;Haolin Tang\",\"doi\":\"10.1016/j.apmate.2024.100203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Proton exchange membrane water electrolysis (PEMWE) plays a critical role in practical hydrogen production. Except for the electrode activities, the widespread deployment of PEMWE is severely obstructed by the poor electron-proton permeability across the catalyst layer (CL) and the inefficient transport structure. In this work, the PEDOT:F (Poly(3,4-ethylenedioxythiophene):perfluorosulfonic acid) ionomers with mixed proton-electron conductor (MPEC) were fabricated, which allows for a homogeneous anodic CL structure and the construction of a highly efficient triple-phase interface. The PEDOT:F exhibits strong perfluorosulfonic acid (PFSA) side chain extensibility, enabling the formation of large hydrophilic ion clusters that form proton-electron transport channels within the CL networks, thus contributing to the surface reactant water adsorption. The PEMWE device employing membrane electrode assembly (MEA) prepared by PEDOT:F-2 demonstrates a competitive voltage of 1.713 ​V under a water-splitting current of 2 ​A ​cm<sup>−2</sup> (1.746 ​V at 2A cm<sup>−2</sup> for MEA prepared by Nafion D520), along with exceptional long-term stability. Meanwhile, the MEA prepared by PEDOT:F-2 also exhibits lower ohmic resistance, which is reduced by 23.4 ​% and 17.6 ​% at 0.1 ​A ​cm<sup>−2</sup> and 1.5 ​A ​cm<sup>−2</sup>, respectively, as compared to the MEA prepared by D520. The augmentation can be ascribed to the superior proton and electron conductivity inherent in PEDOT:F, coupled with its remarkable structural stability. This characteristic enables expeditious mass transfer during electrolytic reactions, thereby enhancing the performance of PEMWE devices.</p></div>\",\"PeriodicalId\":7283,\"journal\":{\"name\":\"Advanced Powder Materials\",\"volume\":\"3 4\",\"pages\":\"Article 100203\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772834X24000344/pdfft?md5=36f1d7765a8be5d8d664a3f896a74748&pid=1-s2.0-S2772834X24000344-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Powder Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772834X24000344\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Powder Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772834X24000344","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

质子交换膜电解水(PEMWE)在实际制氢过程中发挥着至关重要的作用。除电极活性外,催化剂层(CL)上电子-质子渗透性差和传输结构效率低严重阻碍了质子交换膜水电解法的广泛应用。在这项工作中,制备了具有混合质子-电子导体(MPEC)的 PEDOT:F(聚(3,4-亚乙二氧基噻吩):全氟磺酸)离子体,从而实现了均匀的阳极 CL 结构,并构建了高效的三相界面。PEDOT:F 具有很强的全氟磺酸(PFSA)侧链延伸性,能够形成大型亲水离子簇,在 CL 网络中形成质子-电子传输通道,从而促进表面反应物质水的吸附。采用 PEDOT:F-2 制备的膜电极组件(MEA)的 PEMWE 器件在 2 A cm-2 的分水电流下显示出 1.713 V 的竞争电压(Nafion D520 制备的 MEA 在 2A cm-2 时为 1.746 V),并且具有优异的长期稳定性。同时,PEDOT:F-2 制备的 MEA 还表现出较低的欧姆电阻,与 D520 制备的 MEA 相比,在 0.1 A cm-2 和 1.5 A cm-2 条件下,欧姆电阻分别降低了 23.4% 和 17.6%。质子和电子传导性的增强可归因于 PEDOT:F 固有的优异质子和电子传导性及其显著的结构稳定性。这一特性可在电解反应过程中加快传质,从而提高 PEMWE 器件的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhancing proton exchange membrane water electrolysis by building electron/proton pathways

Proton exchange membrane water electrolysis (PEMWE) plays a critical role in practical hydrogen production. Except for the electrode activities, the widespread deployment of PEMWE is severely obstructed by the poor electron-proton permeability across the catalyst layer (CL) and the inefficient transport structure. In this work, the PEDOT:F (Poly(3,4-ethylenedioxythiophene):perfluorosulfonic acid) ionomers with mixed proton-electron conductor (MPEC) were fabricated, which allows for a homogeneous anodic CL structure and the construction of a highly efficient triple-phase interface. The PEDOT:F exhibits strong perfluorosulfonic acid (PFSA) side chain extensibility, enabling the formation of large hydrophilic ion clusters that form proton-electron transport channels within the CL networks, thus contributing to the surface reactant water adsorption. The PEMWE device employing membrane electrode assembly (MEA) prepared by PEDOT:F-2 demonstrates a competitive voltage of 1.713 ​V under a water-splitting current of 2 ​A ​cm−2 (1.746 ​V at 2A cm−2 for MEA prepared by Nafion D520), along with exceptional long-term stability. Meanwhile, the MEA prepared by PEDOT:F-2 also exhibits lower ohmic resistance, which is reduced by 23.4 ​% and 17.6 ​% at 0.1 ​A ​cm−2 and 1.5 ​A ​cm−2, respectively, as compared to the MEA prepared by D520. The augmentation can be ascribed to the superior proton and electron conductivity inherent in PEDOT:F, coupled with its remarkable structural stability. This characteristic enables expeditious mass transfer during electrolytic reactions, thereby enhancing the performance of PEMWE devices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
33.30
自引率
0.00%
发文量
0
期刊最新文献
Multicolor chiral perovskite nanowire films with strong and tailorable circularly polarized luminescence Frustrated lewis pairs regulated solid polymer electrolyte enables ultralong cycles of lithium metal batteries Coupling Enteromorpha prolifera-derived N-doped biochar with Cu-Mo2C clusters for selective CO2 hydrogenation to CO Enhanced photoelectric and thermoelectric coupling factor in BiMn2O5 ferroelectric film Electrolyte-independent and sustained inorganic-rich layer with functional anion aggregates for stable lithium metal electrode
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1