从三维、灵巧、单端口工作空间到单段连续机器人

IF 3.1 3区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS Mechatronics Pub Date : 2024-05-14 DOI:10.1016/j.mechatronics.2024.103194
Sven Fritsch, Dirk Oberschmidt
{"title":"从三维、灵巧、单端口工作空间到单段连续机器人","authors":"Sven Fritsch,&nbsp;Dirk Oberschmidt","doi":"10.1016/j.mechatronics.2024.103194","DOIUrl":null,"url":null,"abstract":"<div><p>Given the limited availability of off-the-shelf continuum robots (CRs), researchers and engineers must design their own and tailor them to their specific use case requirements. Questions such as the following arise: What is the minimum length of the CR needed to achieve the desired dexterous workspace? And where should the robot be ideally located with respect to the workspace? These questions are answered for a single-port setup in this paper. A projection-based method is introduced that maps the dimensionality of the required workspace from 3D to 1D, exploiting the remaining degrees of freedom preserved in a single-port procedure. Then, a set of equations for the most critical point in the workspace is described, representing the geometry of both the CR and the workspace. A bounded, non-linear optimization approach is implemented, computing the global minimum of this set of equations. This method is simulated and tested for a length-extensible, multi-backbone CR. To the best of the authors’ knowledge, this is the first time a desired dexterous workspace has been empirically verified for a CR. Furthermore, the prototype features novel design elements that solve relevant mechanical challenges in the state-of-the-art</p></div>","PeriodicalId":49842,"journal":{"name":"Mechatronics","volume":"101 ","pages":"Article 103194"},"PeriodicalIF":3.1000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S095741582400059X/pdfft?md5=0aabc9ccd98fcf110daf5b1d8090e29f&pid=1-s2.0-S095741582400059X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Getting from a 3D, dexterous, single-port workspace to a one-segment continuum robot\",\"authors\":\"Sven Fritsch,&nbsp;Dirk Oberschmidt\",\"doi\":\"10.1016/j.mechatronics.2024.103194\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Given the limited availability of off-the-shelf continuum robots (CRs), researchers and engineers must design their own and tailor them to their specific use case requirements. Questions such as the following arise: What is the minimum length of the CR needed to achieve the desired dexterous workspace? And where should the robot be ideally located with respect to the workspace? These questions are answered for a single-port setup in this paper. A projection-based method is introduced that maps the dimensionality of the required workspace from 3D to 1D, exploiting the remaining degrees of freedom preserved in a single-port procedure. Then, a set of equations for the most critical point in the workspace is described, representing the geometry of both the CR and the workspace. A bounded, non-linear optimization approach is implemented, computing the global minimum of this set of equations. This method is simulated and tested for a length-extensible, multi-backbone CR. To the best of the authors’ knowledge, this is the first time a desired dexterous workspace has been empirically verified for a CR. Furthermore, the prototype features novel design elements that solve relevant mechanical challenges in the state-of-the-art</p></div>\",\"PeriodicalId\":49842,\"journal\":{\"name\":\"Mechatronics\",\"volume\":\"101 \",\"pages\":\"Article 103194\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S095741582400059X/pdfft?md5=0aabc9ccd98fcf110daf5b1d8090e29f&pid=1-s2.0-S095741582400059X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechatronics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S095741582400059X\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechatronics","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S095741582400059X","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

由于现成的连续性机器人 (CR) 数量有限,研究人员和工程师必须自行设计,并根据具体的使用要求进行定制。这就产生了以下问题:要实现所需的灵巧工作空间,CR 的最小长度是多少?机器人相对于工作空间的理想位置在哪里?本文针对单端口设置回答了这些问题。本文介绍了一种基于投影的方法,该方法可将所需工作空间的维度从三维映射到一维,同时利用单端口程序中保留的剩余自由度。然后,描述了工作空间中最临界点的方程组,代表了 CR 和工作空间的几何形状。采用一种有界非线性优化方法,计算这组方程的全局最小值。该方法针对长度可扩展的多骨干 CR 进行了模拟和测试。据作者所知,这是首次对 CR 所需的灵巧工作空间进行经验验证。此外,该原型还具有新颖的设计元素,解决了最先进的机械挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Getting from a 3D, dexterous, single-port workspace to a one-segment continuum robot

Given the limited availability of off-the-shelf continuum robots (CRs), researchers and engineers must design their own and tailor them to their specific use case requirements. Questions such as the following arise: What is the minimum length of the CR needed to achieve the desired dexterous workspace? And where should the robot be ideally located with respect to the workspace? These questions are answered for a single-port setup in this paper. A projection-based method is introduced that maps the dimensionality of the required workspace from 3D to 1D, exploiting the remaining degrees of freedom preserved in a single-port procedure. Then, a set of equations for the most critical point in the workspace is described, representing the geometry of both the CR and the workspace. A bounded, non-linear optimization approach is implemented, computing the global minimum of this set of equations. This method is simulated and tested for a length-extensible, multi-backbone CR. To the best of the authors’ knowledge, this is the first time a desired dexterous workspace has been empirically verified for a CR. Furthermore, the prototype features novel design elements that solve relevant mechanical challenges in the state-of-the-art

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mechatronics
Mechatronics 工程技术-工程:电子与电气
CiteScore
5.90
自引率
9.10%
发文量
0
审稿时长
109 days
期刊介绍: Mechatronics is the synergistic combination of precision mechanical engineering, electronic control and systems thinking in the design of products and manufacturing processes. It relates to the design of systems, devices and products aimed at achieving an optimal balance between basic mechanical structure and its overall control. The purpose of this journal is to provide rapid publication of topical papers featuring practical developments in mechatronics. It will cover a wide range of application areas including consumer product design, instrumentation, manufacturing methods, computer integration and process and device control, and will attract a readership from across the industrial and academic research spectrum. Particular importance will be attached to aspects of innovation in mechatronics design philosophy which illustrate the benefits obtainable by an a priori integration of functionality with embedded microprocessor control. A major item will be the design of machines, devices and systems possessing a degree of computer based intelligence. The journal seeks to publish research progress in this field with an emphasis on the applied rather than the theoretical. It will also serve the dual role of bringing greater recognition to this important area of engineering.
期刊最新文献
Novel permanent magnet spherical motor driven by coaxial magnetic moment of rotating magnetic field Editorial Board In-situ piezoelectric sensors for structural health monitoring with machine learning integration Editorial Board Enhancing capsule endoscopy with an orient-controllable internal actuation mechanism: Proof of concept
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1