{"title":"从三维、灵巧、单端口工作空间到单段连续机器人","authors":"Sven Fritsch, Dirk Oberschmidt","doi":"10.1016/j.mechatronics.2024.103194","DOIUrl":null,"url":null,"abstract":"<div><p>Given the limited availability of off-the-shelf continuum robots (CRs), researchers and engineers must design their own and tailor them to their specific use case requirements. Questions such as the following arise: What is the minimum length of the CR needed to achieve the desired dexterous workspace? And where should the robot be ideally located with respect to the workspace? These questions are answered for a single-port setup in this paper. A projection-based method is introduced that maps the dimensionality of the required workspace from 3D to 1D, exploiting the remaining degrees of freedom preserved in a single-port procedure. Then, a set of equations for the most critical point in the workspace is described, representing the geometry of both the CR and the workspace. A bounded, non-linear optimization approach is implemented, computing the global minimum of this set of equations. This method is simulated and tested for a length-extensible, multi-backbone CR. To the best of the authors’ knowledge, this is the first time a desired dexterous workspace has been empirically verified for a CR. Furthermore, the prototype features novel design elements that solve relevant mechanical challenges in the state-of-the-art</p></div>","PeriodicalId":49842,"journal":{"name":"Mechatronics","volume":"101 ","pages":"Article 103194"},"PeriodicalIF":3.1000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S095741582400059X/pdfft?md5=0aabc9ccd98fcf110daf5b1d8090e29f&pid=1-s2.0-S095741582400059X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Getting from a 3D, dexterous, single-port workspace to a one-segment continuum robot\",\"authors\":\"Sven Fritsch, Dirk Oberschmidt\",\"doi\":\"10.1016/j.mechatronics.2024.103194\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Given the limited availability of off-the-shelf continuum robots (CRs), researchers and engineers must design their own and tailor them to their specific use case requirements. Questions such as the following arise: What is the minimum length of the CR needed to achieve the desired dexterous workspace? And where should the robot be ideally located with respect to the workspace? These questions are answered for a single-port setup in this paper. A projection-based method is introduced that maps the dimensionality of the required workspace from 3D to 1D, exploiting the remaining degrees of freedom preserved in a single-port procedure. Then, a set of equations for the most critical point in the workspace is described, representing the geometry of both the CR and the workspace. A bounded, non-linear optimization approach is implemented, computing the global minimum of this set of equations. This method is simulated and tested for a length-extensible, multi-backbone CR. To the best of the authors’ knowledge, this is the first time a desired dexterous workspace has been empirically verified for a CR. Furthermore, the prototype features novel design elements that solve relevant mechanical challenges in the state-of-the-art</p></div>\",\"PeriodicalId\":49842,\"journal\":{\"name\":\"Mechatronics\",\"volume\":\"101 \",\"pages\":\"Article 103194\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S095741582400059X/pdfft?md5=0aabc9ccd98fcf110daf5b1d8090e29f&pid=1-s2.0-S095741582400059X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechatronics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S095741582400059X\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechatronics","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S095741582400059X","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Getting from a 3D, dexterous, single-port workspace to a one-segment continuum robot
Given the limited availability of off-the-shelf continuum robots (CRs), researchers and engineers must design their own and tailor them to their specific use case requirements. Questions such as the following arise: What is the minimum length of the CR needed to achieve the desired dexterous workspace? And where should the robot be ideally located with respect to the workspace? These questions are answered for a single-port setup in this paper. A projection-based method is introduced that maps the dimensionality of the required workspace from 3D to 1D, exploiting the remaining degrees of freedom preserved in a single-port procedure. Then, a set of equations for the most critical point in the workspace is described, representing the geometry of both the CR and the workspace. A bounded, non-linear optimization approach is implemented, computing the global minimum of this set of equations. This method is simulated and tested for a length-extensible, multi-backbone CR. To the best of the authors’ knowledge, this is the first time a desired dexterous workspace has been empirically verified for a CR. Furthermore, the prototype features novel design elements that solve relevant mechanical challenges in the state-of-the-art
期刊介绍:
Mechatronics is the synergistic combination of precision mechanical engineering, electronic control and systems thinking in the design of products and manufacturing processes. It relates to the design of systems, devices and products aimed at achieving an optimal balance between basic mechanical structure and its overall control. The purpose of this journal is to provide rapid publication of topical papers featuring practical developments in mechatronics. It will cover a wide range of application areas including consumer product design, instrumentation, manufacturing methods, computer integration and process and device control, and will attract a readership from across the industrial and academic research spectrum. Particular importance will be attached to aspects of innovation in mechatronics design philosophy which illustrate the benefits obtainable by an a priori integration of functionality with embedded microprocessor control. A major item will be the design of machines, devices and systems possessing a degree of computer based intelligence. The journal seeks to publish research progress in this field with an emphasis on the applied rather than the theoretical. It will also serve the dual role of bringing greater recognition to this important area of engineering.