在超导量子处理器上探测量子远程克隆

Elijah Pelofske;Andreas Bärtschi;Stephan Eidenbenz;Bryan Garcia;Boris Kiefer
{"title":"在超导量子处理器上探测量子远程克隆","authors":"Elijah Pelofske;Andreas Bärtschi;Stephan Eidenbenz;Bryan Garcia;Boris Kiefer","doi":"10.1109/TQE.2024.3391654","DOIUrl":null,"url":null,"abstract":"Quantum information cannot be perfectly cloned, but approximate copies of quantum information can be generated. Quantum telecloning combines approximate quantum cloning, more typically referred to as quantum cloning, and quantum teleportation. Quantum telecloning allows approximate copies of quantum information to be constructed by separate parties, using the classical results of a Bell measurement made on a prepared quantum telecloning state. Quantum telecloning can be implemented as a circuit on quantum computers using a classical coprocessor to compute classical feedforward instructions using if statements based on the results of a midcircuit Bell measurement in real time. We present universal symmetric optimal \n<inline-formula><tex-math>$1 \\rightarrow M$</tex-math></inline-formula>\n telecloning circuits and experimentally demonstrate these quantum telecloning circuits for \n<inline-formula><tex-math>$M=2$</tex-math></inline-formula>\n up to \n<inline-formula><tex-math>$M=10$</tex-math></inline-formula>\n, natively executed with real-time classical control systems on IBM Quantum superconducting processors, known as dynamic circuits. We perform the cloning procedure on many different message states across the Bloch sphere, on seven IBM Quantum processors, optionally using the error suppression technique X–X sequence digital dynamical decoupling. Two circuit optimizations are utilized: one that removes ancilla qubits for \n<inline-formula><tex-math>$M=2, 3$</tex-math></inline-formula>\n, and one that reduces the total number of gates in the circuit but still uses ancilla qubits. Parallel single-qubit tomography with maximum likelihood estimation density matrix reconstruction is used in order to compute the mixed-state density matrices of the clone qubits, and clone quality is measured using quantum fidelity. These results present one of the largest and most comprehensive noisy intermediate-scale quantum computer experimental analyses on (single qubit) quantum telecloning to date. The clone fidelity sharply decreases to 0.5 for \n<inline-formula><tex-math>$M &gt; 5$</tex-math></inline-formula>\n, but for \n<inline-formula><tex-math>$M=2$</tex-math></inline-formula>\n, we are able to achieve a mean clone fidelity of up to 0.79 using dynamical decoupling.","PeriodicalId":100644,"journal":{"name":"IEEE Transactions on Quantum Engineering","volume":"5 ","pages":"1-19"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10505824","citationCount":"0","resultStr":"{\"title\":\"Probing Quantum Telecloning on Superconducting Quantum Processors\",\"authors\":\"Elijah Pelofske;Andreas Bärtschi;Stephan Eidenbenz;Bryan Garcia;Boris Kiefer\",\"doi\":\"10.1109/TQE.2024.3391654\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quantum information cannot be perfectly cloned, but approximate copies of quantum information can be generated. Quantum telecloning combines approximate quantum cloning, more typically referred to as quantum cloning, and quantum teleportation. Quantum telecloning allows approximate copies of quantum information to be constructed by separate parties, using the classical results of a Bell measurement made on a prepared quantum telecloning state. Quantum telecloning can be implemented as a circuit on quantum computers using a classical coprocessor to compute classical feedforward instructions using if statements based on the results of a midcircuit Bell measurement in real time. We present universal symmetric optimal \\n<inline-formula><tex-math>$1 \\\\rightarrow M$</tex-math></inline-formula>\\n telecloning circuits and experimentally demonstrate these quantum telecloning circuits for \\n<inline-formula><tex-math>$M=2$</tex-math></inline-formula>\\n up to \\n<inline-formula><tex-math>$M=10$</tex-math></inline-formula>\\n, natively executed with real-time classical control systems on IBM Quantum superconducting processors, known as dynamic circuits. We perform the cloning procedure on many different message states across the Bloch sphere, on seven IBM Quantum processors, optionally using the error suppression technique X–X sequence digital dynamical decoupling. Two circuit optimizations are utilized: one that removes ancilla qubits for \\n<inline-formula><tex-math>$M=2, 3$</tex-math></inline-formula>\\n, and one that reduces the total number of gates in the circuit but still uses ancilla qubits. Parallel single-qubit tomography with maximum likelihood estimation density matrix reconstruction is used in order to compute the mixed-state density matrices of the clone qubits, and clone quality is measured using quantum fidelity. These results present one of the largest and most comprehensive noisy intermediate-scale quantum computer experimental analyses on (single qubit) quantum telecloning to date. The clone fidelity sharply decreases to 0.5 for \\n<inline-formula><tex-math>$M &gt; 5$</tex-math></inline-formula>\\n, but for \\n<inline-formula><tex-math>$M=2$</tex-math></inline-formula>\\n, we are able to achieve a mean clone fidelity of up to 0.79 using dynamical decoupling.\",\"PeriodicalId\":100644,\"journal\":{\"name\":\"IEEE Transactions on Quantum Engineering\",\"volume\":\"5 \",\"pages\":\"1-19\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10505824\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Quantum Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10505824/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Quantum Engineering","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10505824/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

量子信息无法完美克隆,但可以生成量子信息的近似副本。量子远程克隆结合了近似量子克隆(通常称为量子克隆)和量子远程传输。量子远距克隆可以利用对准备好的量子远距克隆状态进行贝尔测量的经典结果,由不同的当事人构建量子信息的近似副本。量子远程克隆可以在量子计算机上以电路的形式实现,使用经典协处理器,根据电路中段贝尔测量的结果,使用 if 语句实时计算经典前馈指令。我们提出了通用对称最优1美元/rightarrow M美元远程克隆电路,并在实验中演示了这些M=2美元到M=10美元的量子远程克隆电路,在IBM量子超导处理器(称为动态电路)上使用实时经典控制系统原生执行。我们在七台 IBM 量子处理器上对布洛赫球上的许多不同信息状态执行克隆程序,可选择使用误差抑制技术 X-X 序列数字动态解耦。我们采用了两种电路优化方法:一种是在 $M=2、3$ 时移除辅助量子比特,另一种是减少电路中的门总数,但仍使用辅助量子比特。为了计算克隆量子比特的混合态密度矩阵,我们使用了并行单量子比特层析技术和最大似然估计密度矩阵重构技术,并使用量子保真度来测量克隆质量。这些结果展示了迄今为止对(单量子比特)量子远程克隆进行的最大规模、最全面的噪声中型量子计算机实验分析之一。对于 $M > 5$,克隆保真度急剧下降至 0.5,但对于 $M=2$,我们能够利用动态解耦实现高达 0.79 的平均克隆保真度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Probing Quantum Telecloning on Superconducting Quantum Processors
Quantum information cannot be perfectly cloned, but approximate copies of quantum information can be generated. Quantum telecloning combines approximate quantum cloning, more typically referred to as quantum cloning, and quantum teleportation. Quantum telecloning allows approximate copies of quantum information to be constructed by separate parties, using the classical results of a Bell measurement made on a prepared quantum telecloning state. Quantum telecloning can be implemented as a circuit on quantum computers using a classical coprocessor to compute classical feedforward instructions using if statements based on the results of a midcircuit Bell measurement in real time. We present universal symmetric optimal $1 \rightarrow M$ telecloning circuits and experimentally demonstrate these quantum telecloning circuits for $M=2$ up to $M=10$ , natively executed with real-time classical control systems on IBM Quantum superconducting processors, known as dynamic circuits. We perform the cloning procedure on many different message states across the Bloch sphere, on seven IBM Quantum processors, optionally using the error suppression technique X–X sequence digital dynamical decoupling. Two circuit optimizations are utilized: one that removes ancilla qubits for $M=2, 3$ , and one that reduces the total number of gates in the circuit but still uses ancilla qubits. Parallel single-qubit tomography with maximum likelihood estimation density matrix reconstruction is used in order to compute the mixed-state density matrices of the clone qubits, and clone quality is measured using quantum fidelity. These results present one of the largest and most comprehensive noisy intermediate-scale quantum computer experimental analyses on (single qubit) quantum telecloning to date. The clone fidelity sharply decreases to 0.5 for $M > 5$ , but for $M=2$ , we are able to achieve a mean clone fidelity of up to 0.79 using dynamical decoupling.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.00
自引率
0.00%
发文量
0
期刊最新文献
IEEE Transactions on Quantum Engineering Publication Information Dissipative Variational Quantum Algorithms for Gibbs State Preparation TAQNet: Traffic-Aware Minimum-Cost Quantum Communication Network Planning FPGA-Based Synchronization of Frequency-Domain Interferometer for QKD Grover's Oracle for the Shortest Vector Problem and Its Application in Hybrid Classical–Quantum Solvers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1