{"title":"利用高光谱成像技术和深度卷积神经网络快速同步检测麦仁掺假情况","authors":"Jingwu Zhu, Zhenhong Rao, Haiyan Ji","doi":"10.1111/jfs.13133","DOIUrl":null,"url":null,"abstract":"<p>In this study, hyperspectral imaging technology combined with a novel convolution neural network was utilized to detect wheat kernels adulteration. Two groups of wheat kernels were used as samples in this study. Sound wheat kernels from various varieties were in one group, while unsound wheat kernels of the same variety were in another. Hyperspectral images collected from these two groups of wheat kernels were preprocessed using a series of commonly used methods. Following the collection of hyperspectral data, a method of separating and recombining individual wheat kernels from entire hyperspectral images was applied to create training sets and validation sets. Subsequently, a series of tests were carried out to verify whether the proposed model Following that, a number of experiments were conducted to confirm if the suggested model was effective in simultaneously detecting adulterated wheat kernels, and the results gave a positive conclusion. Finally, accuracy, precision, recall and F1-scores were used as indicators to evaluate the performance of the proposed models on the test set. As the results demonstrated, satisfactory performance in detecting adulteration of the two groups of wheat kernels was obtained by the proposed model. According to the results, the proposed model combined with HSI technology has a good prospect of being used as an efficient method for detecting wheat kernels adulteration.</p>","PeriodicalId":15814,"journal":{"name":"Journal of Food Safety","volume":"44 3","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fast and simultaneous detection of wheat kernel adulteration using hyperspectral imaging technology and deep convolutional neural network\",\"authors\":\"Jingwu Zhu, Zhenhong Rao, Haiyan Ji\",\"doi\":\"10.1111/jfs.13133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this study, hyperspectral imaging technology combined with a novel convolution neural network was utilized to detect wheat kernels adulteration. Two groups of wheat kernels were used as samples in this study. Sound wheat kernels from various varieties were in one group, while unsound wheat kernels of the same variety were in another. Hyperspectral images collected from these two groups of wheat kernels were preprocessed using a series of commonly used methods. Following the collection of hyperspectral data, a method of separating and recombining individual wheat kernels from entire hyperspectral images was applied to create training sets and validation sets. Subsequently, a series of tests were carried out to verify whether the proposed model Following that, a number of experiments were conducted to confirm if the suggested model was effective in simultaneously detecting adulterated wheat kernels, and the results gave a positive conclusion. Finally, accuracy, precision, recall and F1-scores were used as indicators to evaluate the performance of the proposed models on the test set. As the results demonstrated, satisfactory performance in detecting adulteration of the two groups of wheat kernels was obtained by the proposed model. According to the results, the proposed model combined with HSI technology has a good prospect of being used as an efficient method for detecting wheat kernels adulteration.</p>\",\"PeriodicalId\":15814,\"journal\":{\"name\":\"Journal of Food Safety\",\"volume\":\"44 3\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Food Safety\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jfs.13133\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Safety","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jfs.13133","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
本研究利用高光谱成像技术结合新型卷积神经网络来检测小麦籽粒掺假情况。本研究使用了两组小麦颗粒作为样本。一组是来自不同品种的完好麦粒,另一组是同一品种的不完好麦粒。从这两组麦粒中收集的高光谱图像采用一系列常用方法进行预处理。收集高光谱数据后,采用从整个高光谱图像中分离和重组单个麦粒的方法,创建训练集和验证集。随后,进行了一系列测试,以验证所建议的模型是否有效。 接着,进行了一系列实验,以确认所建议的模型是否能有效地同时检测出掺假麦粒,结果给出了肯定的结论。最后,以准确度、精确度、召回率和 F1 分数为指标,评估了所提模型在测试集上的表现。结果表明,所提出的模型在检测两组麦仁的掺假方面取得了令人满意的性能。结果表明,所提出的模型与人机交互技术相结合,有望成为检测麦仁掺假的有效方法。
Fast and simultaneous detection of wheat kernel adulteration using hyperspectral imaging technology and deep convolutional neural network
In this study, hyperspectral imaging technology combined with a novel convolution neural network was utilized to detect wheat kernels adulteration. Two groups of wheat kernels were used as samples in this study. Sound wheat kernels from various varieties were in one group, while unsound wheat kernels of the same variety were in another. Hyperspectral images collected from these two groups of wheat kernels were preprocessed using a series of commonly used methods. Following the collection of hyperspectral data, a method of separating and recombining individual wheat kernels from entire hyperspectral images was applied to create training sets and validation sets. Subsequently, a series of tests were carried out to verify whether the proposed model Following that, a number of experiments were conducted to confirm if the suggested model was effective in simultaneously detecting adulterated wheat kernels, and the results gave a positive conclusion. Finally, accuracy, precision, recall and F1-scores were used as indicators to evaluate the performance of the proposed models on the test set. As the results demonstrated, satisfactory performance in detecting adulteration of the two groups of wheat kernels was obtained by the proposed model. According to the results, the proposed model combined with HSI technology has a good prospect of being used as an efficient method for detecting wheat kernels adulteration.
期刊介绍:
The Journal of Food Safety emphasizes mechanistic studies involving inhibition, injury, and metabolism of food poisoning microorganisms, as well as the regulation of growth and toxin production in both model systems and complex food substrates. It also focuses on pathogens which cause food-borne illness, helping readers understand the factors affecting the initial detection of parasites, their development, transmission, and methods of control and destruction.