PDB2DAT:使用 Python、Rdkit 和 Pysimm 从 PDB 分子系统自动生成 LAMMPS 数据文件

IF 1.3 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING Software Impacts Pub Date : 2024-05-01 DOI:10.1016/j.simpa.2024.100656
Eli I. Assaf , Xueyan Liu , Peng Lin , Sandra Erkens
{"title":"PDB2DAT:使用 Python、Rdkit 和 Pysimm 从 PDB 分子系统自动生成 LAMMPS 数据文件","authors":"Eli I. Assaf ,&nbsp;Xueyan Liu ,&nbsp;Peng Lin ,&nbsp;Sandra Erkens","doi":"10.1016/j.simpa.2024.100656","DOIUrl":null,"url":null,"abstract":"<div><p>Pdb2dat, developed in Python, is an open-source, self-contained utility that facilitates the conversion of PDB files into LAMMPS data files, catering to the need of initializing atomistic simulation from initial atomic configurations. It extracts molecular details from PDB files, uses Rdkit and Xyz2mol for bonding analysis and 3D conformer generation, and uses Pysimm for assigning force field types and charges. Designed to be lightweight and fully Pythonic, pdb2dat is suitable for use in privilege-limited high-throughput environments. The output details system topologies for use in MD simulations, significantly simplifying the preparatory steps needed by researchers to explore materials phenomena through LAMMPS.</p></div>","PeriodicalId":29771,"journal":{"name":"Software Impacts","volume":"20 ","pages":"Article 100656"},"PeriodicalIF":1.3000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2665963824000447/pdfft?md5=8dafb146009b3efc92ac3f2c12f9857b&pid=1-s2.0-S2665963824000447-main.pdf","citationCount":"0","resultStr":"{\"title\":\"PDB2DAT: Automating LAMMPS data file generation from PDB molecular systems using Python, Rdkit, and Pysimm\",\"authors\":\"Eli I. Assaf ,&nbsp;Xueyan Liu ,&nbsp;Peng Lin ,&nbsp;Sandra Erkens\",\"doi\":\"10.1016/j.simpa.2024.100656\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Pdb2dat, developed in Python, is an open-source, self-contained utility that facilitates the conversion of PDB files into LAMMPS data files, catering to the need of initializing atomistic simulation from initial atomic configurations. It extracts molecular details from PDB files, uses Rdkit and Xyz2mol for bonding analysis and 3D conformer generation, and uses Pysimm for assigning force field types and charges. Designed to be lightweight and fully Pythonic, pdb2dat is suitable for use in privilege-limited high-throughput environments. The output details system topologies for use in MD simulations, significantly simplifying the preparatory steps needed by researchers to explore materials phenomena through LAMMPS.</p></div>\",\"PeriodicalId\":29771,\"journal\":{\"name\":\"Software Impacts\",\"volume\":\"20 \",\"pages\":\"Article 100656\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2665963824000447/pdfft?md5=8dafb146009b3efc92ac3f2c12f9857b&pid=1-s2.0-S2665963824000447-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Software Impacts\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2665963824000447\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Software Impacts","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2665963824000447","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

Pdb2dat 是用 Python 开发的一款开源、独立的实用程序,可帮助将 PDB 文件转换为 LAMMPS 数据文件,满足从初始原子构型初始化原子模拟的需要。它能从 PDB 文件中提取分子细节,使用 Rdkit 和 Xyz2mol 进行成键分析和三维构象生成,并使用 Pysimm 分配力场类型和电荷。pdb2dat 设计轻巧,完全采用 Pythonic 语言,适合在有权限限制的高通量环境中使用。输出结果详细说明了用于 MD 模拟的系统拓扑结构,大大简化了研究人员通过 LAMMPS 探索材料现象所需的准备步骤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PDB2DAT: Automating LAMMPS data file generation from PDB molecular systems using Python, Rdkit, and Pysimm

Pdb2dat, developed in Python, is an open-source, self-contained utility that facilitates the conversion of PDB files into LAMMPS data files, catering to the need of initializing atomistic simulation from initial atomic configurations. It extracts molecular details from PDB files, uses Rdkit and Xyz2mol for bonding analysis and 3D conformer generation, and uses Pysimm for assigning force field types and charges. Designed to be lightweight and fully Pythonic, pdb2dat is suitable for use in privilege-limited high-throughput environments. The output details system topologies for use in MD simulations, significantly simplifying the preparatory steps needed by researchers to explore materials phenomena through LAMMPS.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Software Impacts
Software Impacts Software
CiteScore
2.70
自引率
9.50%
发文量
0
审稿时长
16 days
期刊最新文献
KNNOR-Reg: A python package for oversampling in imbalanced regression pff-oc: A space–time phase-field fracture optimal control framework Synthetic dataset generation system for vehicle detection Multi-browser VE: Enhancing internet browsing experience through virtual reality DeepPack3D: A Python package for online 3D bin packing optimization by deep reinforcement learning and constructive heuristics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1