Pengwei Zhou , Hongche Yin , Guozheng Xu , Li Li , Jian Yao , Jian Li , Changfeng Liu , Zuoqin Shi
{"title":"元校准采用 ArUco 编码元板的通用、稳健、精确的相机校准框架","authors":"Pengwei Zhou , Hongche Yin , Guozheng Xu , Li Li , Jian Yao , Jian Li , Changfeng Liu , Zuoqin Shi","doi":"10.1016/j.isprsjprs.2024.05.005","DOIUrl":null,"url":null,"abstract":"<div><p>The rapid development of augmented reality (AR), 3D reconstruction, simultaneous localization and mapping (SLAM), and autonomous driving requires off-the-shelf camera calibration solutions that are adaptable to cameras of different configurations in different complex scenarios. To this end, we propose a generic, robust, and accurate camera calibration framework, called Meta-Calib, by using single or multiple novel designed ArUco-encoded meta-board(s), which is dedicated to estimate accurate camera intrinsic parameters and extrinsic transformations of different multi-camera configurations. The ArUco calibration board has been redesigned to facilitate learning-based robust detection and obtain higher precision control point coordinates, which is termed the meta-board. This completely replaces the widely-used chessboard based on the corner extraction scheme to greatly alleviate the impact of image distortion on control points, especially when it is located at the boundary area of the fish-eye camera. A robust two-stage deep learning detection strategy is applied to reliably localize the ArUco-encoded inner coding region of the meta-board followed by identifying two categories of circular shapes representing “0” and “1” encoded in the ArUco pattern for decoding and orientation determination. The center points of circular shapes on the meta-board in the distorted image taken under the perspective view can be approximated through elliptical fitting with contour edges. The deviation between the fitting center points and ground-truth can be greatly suppressed when the refined sub-pixel contour edges extracted on the original image are projected to the orthographic projection view based on the camera intrinsic parameters, distortion coefficients and the prior information of the meta-board. Based on this observation, we propose a systematic iterative refinement approach to achieve the high-precision intrinsic calibration of a camera. This process involves improving the estimation of camera intrinsic parameters and fitting the center control points of circular shapes on the meta-boards in an iterative manner. The progressive nature of our approach permits reliably calibrate large distortion camera models under the presence of noisy measurements, which ensures good convergence. In addition, we also propose a graph-based multi-camera extrinsic calibration method via the corrected control points to reliably estimate both the relative poses of the meta-boards and cameras in the multi-camera system. The proposed method is not constrained by the number of cameras and meta-boards used, which makes our strategy accessible even with inflexible computer vision experts. Furthermore, we have derived the mathematical form for computing the covariance of the extrinsic transformation, which makes it possible to evaluate the uncertainty of the calibration results. Extensive experiments on a large number of both real and synthetic datasets, including perspective, fish-eye, and multiple overlapping cameras, are performed to prove the effectiveness and robustness of the developed Meta-Calib calibration framework.</p></div>","PeriodicalId":50269,"journal":{"name":"ISPRS Journal of Photogrammetry and Remote Sensing","volume":null,"pages":null},"PeriodicalIF":10.6000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Meta-Calib: A generic, robust and accurate camera calibration framework with ArUco-encoded meta-board\",\"authors\":\"Pengwei Zhou , Hongche Yin , Guozheng Xu , Li Li , Jian Yao , Jian Li , Changfeng Liu , Zuoqin Shi\",\"doi\":\"10.1016/j.isprsjprs.2024.05.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The rapid development of augmented reality (AR), 3D reconstruction, simultaneous localization and mapping (SLAM), and autonomous driving requires off-the-shelf camera calibration solutions that are adaptable to cameras of different configurations in different complex scenarios. To this end, we propose a generic, robust, and accurate camera calibration framework, called Meta-Calib, by using single or multiple novel designed ArUco-encoded meta-board(s), which is dedicated to estimate accurate camera intrinsic parameters and extrinsic transformations of different multi-camera configurations. The ArUco calibration board has been redesigned to facilitate learning-based robust detection and obtain higher precision control point coordinates, which is termed the meta-board. This completely replaces the widely-used chessboard based on the corner extraction scheme to greatly alleviate the impact of image distortion on control points, especially when it is located at the boundary area of the fish-eye camera. A robust two-stage deep learning detection strategy is applied to reliably localize the ArUco-encoded inner coding region of the meta-board followed by identifying two categories of circular shapes representing “0” and “1” encoded in the ArUco pattern for decoding and orientation determination. The center points of circular shapes on the meta-board in the distorted image taken under the perspective view can be approximated through elliptical fitting with contour edges. The deviation between the fitting center points and ground-truth can be greatly suppressed when the refined sub-pixel contour edges extracted on the original image are projected to the orthographic projection view based on the camera intrinsic parameters, distortion coefficients and the prior information of the meta-board. Based on this observation, we propose a systematic iterative refinement approach to achieve the high-precision intrinsic calibration of a camera. This process involves improving the estimation of camera intrinsic parameters and fitting the center control points of circular shapes on the meta-boards in an iterative manner. The progressive nature of our approach permits reliably calibrate large distortion camera models under the presence of noisy measurements, which ensures good convergence. In addition, we also propose a graph-based multi-camera extrinsic calibration method via the corrected control points to reliably estimate both the relative poses of the meta-boards and cameras in the multi-camera system. The proposed method is not constrained by the number of cameras and meta-boards used, which makes our strategy accessible even with inflexible computer vision experts. Furthermore, we have derived the mathematical form for computing the covariance of the extrinsic transformation, which makes it possible to evaluate the uncertainty of the calibration results. Extensive experiments on a large number of both real and synthetic datasets, including perspective, fish-eye, and multiple overlapping cameras, are performed to prove the effectiveness and robustness of the developed Meta-Calib calibration framework.</p></div>\",\"PeriodicalId\":50269,\"journal\":{\"name\":\"ISPRS Journal of Photogrammetry and Remote Sensing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":10.6000,\"publicationDate\":\"2024-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISPRS Journal of Photogrammetry and Remote Sensing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S092427162400203X\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOGRAPHY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISPRS Journal of Photogrammetry and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092427162400203X","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
Meta-Calib: A generic, robust and accurate camera calibration framework with ArUco-encoded meta-board
The rapid development of augmented reality (AR), 3D reconstruction, simultaneous localization and mapping (SLAM), and autonomous driving requires off-the-shelf camera calibration solutions that are adaptable to cameras of different configurations in different complex scenarios. To this end, we propose a generic, robust, and accurate camera calibration framework, called Meta-Calib, by using single or multiple novel designed ArUco-encoded meta-board(s), which is dedicated to estimate accurate camera intrinsic parameters and extrinsic transformations of different multi-camera configurations. The ArUco calibration board has been redesigned to facilitate learning-based robust detection and obtain higher precision control point coordinates, which is termed the meta-board. This completely replaces the widely-used chessboard based on the corner extraction scheme to greatly alleviate the impact of image distortion on control points, especially when it is located at the boundary area of the fish-eye camera. A robust two-stage deep learning detection strategy is applied to reliably localize the ArUco-encoded inner coding region of the meta-board followed by identifying two categories of circular shapes representing “0” and “1” encoded in the ArUco pattern for decoding and orientation determination. The center points of circular shapes on the meta-board in the distorted image taken under the perspective view can be approximated through elliptical fitting with contour edges. The deviation between the fitting center points and ground-truth can be greatly suppressed when the refined sub-pixel contour edges extracted on the original image are projected to the orthographic projection view based on the camera intrinsic parameters, distortion coefficients and the prior information of the meta-board. Based on this observation, we propose a systematic iterative refinement approach to achieve the high-precision intrinsic calibration of a camera. This process involves improving the estimation of camera intrinsic parameters and fitting the center control points of circular shapes on the meta-boards in an iterative manner. The progressive nature of our approach permits reliably calibrate large distortion camera models under the presence of noisy measurements, which ensures good convergence. In addition, we also propose a graph-based multi-camera extrinsic calibration method via the corrected control points to reliably estimate both the relative poses of the meta-boards and cameras in the multi-camera system. The proposed method is not constrained by the number of cameras and meta-boards used, which makes our strategy accessible even with inflexible computer vision experts. Furthermore, we have derived the mathematical form for computing the covariance of the extrinsic transformation, which makes it possible to evaluate the uncertainty of the calibration results. Extensive experiments on a large number of both real and synthetic datasets, including perspective, fish-eye, and multiple overlapping cameras, are performed to prove the effectiveness and robustness of the developed Meta-Calib calibration framework.
期刊介绍:
The ISPRS Journal of Photogrammetry and Remote Sensing (P&RS) serves as the official journal of the International Society for Photogrammetry and Remote Sensing (ISPRS). It acts as a platform for scientists and professionals worldwide who are involved in various disciplines that utilize photogrammetry, remote sensing, spatial information systems, computer vision, and related fields. The journal aims to facilitate communication and dissemination of advancements in these disciplines, while also acting as a comprehensive source of reference and archive.
P&RS endeavors to publish high-quality, peer-reviewed research papers that are preferably original and have not been published before. These papers can cover scientific/research, technological development, or application/practical aspects. Additionally, the journal welcomes papers that are based on presentations from ISPRS meetings, as long as they are considered significant contributions to the aforementioned fields.
In particular, P&RS encourages the submission of papers that are of broad scientific interest, showcase innovative applications (especially in emerging fields), have an interdisciplinary focus, discuss topics that have received limited attention in P&RS or related journals, or explore new directions in scientific or professional realms. It is preferred that theoretical papers include practical applications, while papers focusing on systems and applications should include a theoretical background.