通过对LL6软玉NWA 14180的古地磁调查发现的非磁化软玉母体

IF 3.9 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Journal of Geophysical Research: Planets Pub Date : 2024-05-17 DOI:10.1029/2023JE008112
Haijun Li, Huapei Wang, Chen Wen, Ting Cao, Jiabo Liu
{"title":"通过对LL6软玉NWA 14180的古地磁调查发现的非磁化软玉母体","authors":"Haijun Li,&nbsp;Huapei Wang,&nbsp;Chen Wen,&nbsp;Ting Cao,&nbsp;Jiabo Liu","doi":"10.1029/2023JE008112","DOIUrl":null,"url":null,"abstract":"<p>Magnetic records from meteorites provide valuable information about the formation and evolution of the solar system and planets. The parent planetesimals of chondrites are typically considered to be undifferentiated based on their primary chemical composition and texture. However, recent paleomagnetic investigations of various chondrites indicate that they carry a primary remanence generated by a dynamo, suggesting partial differentiation of their parent planetesimals. The presence of a dynamo within the parent planetesimal of LL chondrites remains uncertain due to the ambiguous origin of the remanent magnetism. Here, we report petrographic, paleomagnetic, and rock magnetic properties for the novel LL6 chondrite NWA 14180. The high metamorphic temperature experienced by NWA 14180 could have removed the pre-accretionary remanence. The fusion crust baked-contact test suggests that NWA 14180 preserves primary magnetic information about its parent body. Alternating field demagnetization results from interior subsamples reveal distinct low- and medium-coercivity components that may represent a viscous remanent magnetization acquired in the geomagnetic field. No natural remanent magnetization was unblocked in the high coercivity range, implying that NWA 14180 cooled in zero-field conditions. Therefore, we suggest that the parent body of NWA 14180 did not have a dynamo. Furthermore, this result suggests that the LL chondrite parent planetesimal accreted later and was smaller in size than other chondrite classes.</p>","PeriodicalId":16101,"journal":{"name":"Journal of Geophysical Research: Planets","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Non-Magnetized Chondrite Parent Body Revealed by Paleomagnetic Investigation of LL6 Chondrite NWA 14180\",\"authors\":\"Haijun Li,&nbsp;Huapei Wang,&nbsp;Chen Wen,&nbsp;Ting Cao,&nbsp;Jiabo Liu\",\"doi\":\"10.1029/2023JE008112\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Magnetic records from meteorites provide valuable information about the formation and evolution of the solar system and planets. The parent planetesimals of chondrites are typically considered to be undifferentiated based on their primary chemical composition and texture. However, recent paleomagnetic investigations of various chondrites indicate that they carry a primary remanence generated by a dynamo, suggesting partial differentiation of their parent planetesimals. The presence of a dynamo within the parent planetesimal of LL chondrites remains uncertain due to the ambiguous origin of the remanent magnetism. Here, we report petrographic, paleomagnetic, and rock magnetic properties for the novel LL6 chondrite NWA 14180. The high metamorphic temperature experienced by NWA 14180 could have removed the pre-accretionary remanence. The fusion crust baked-contact test suggests that NWA 14180 preserves primary magnetic information about its parent body. Alternating field demagnetization results from interior subsamples reveal distinct low- and medium-coercivity components that may represent a viscous remanent magnetization acquired in the geomagnetic field. No natural remanent magnetization was unblocked in the high coercivity range, implying that NWA 14180 cooled in zero-field conditions. Therefore, we suggest that the parent body of NWA 14180 did not have a dynamo. Furthermore, this result suggests that the LL chondrite parent planetesimal accreted later and was smaller in size than other chondrite classes.</p>\",\"PeriodicalId\":16101,\"journal\":{\"name\":\"Journal of Geophysical Research: Planets\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysical Research: Planets\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2023JE008112\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Planets","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2023JE008112","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

陨石的磁记录为太阳系和行星的形成和演化提供了宝贵的信息。根据其主要化学成分和质地,人们通常认为金刚石的母体是无差别的。然而,最近对各种软玉体进行的古地磁研究表明,它们带有由动力机产生的原生剩磁,这表明其母体行星基本已经部分分化。由于剩磁的来源不明确,LL chondrit 母行星内是否存在动力仍不确定。在这里,我们报告了新型LL6软玉NWA 14180的岩石学、古地磁和岩石磁性。NWA 14180所经历的高变质温度可能消除了生成前的剩磁。熔融结壳烘烤接触测试表明,NWA 14180 保留了其母体的主要磁性信息。内部子样的交变磁场去磁结果显示了明显的低矫顽力和中等矫顽力成分,可能代表了在地磁场中获得的粘性剩磁。在高矫顽力范围内没有自然剩磁被释放,这意味着NWA 14180是在零磁场条件下冷却的。因此,我们认为NWA 14180的母体没有发电机。此外,这一结果表明,LL类软玉母行星的吸积时间较晚,体积也小于其他类软玉。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Non-Magnetized Chondrite Parent Body Revealed by Paleomagnetic Investigation of LL6 Chondrite NWA 14180

Magnetic records from meteorites provide valuable information about the formation and evolution of the solar system and planets. The parent planetesimals of chondrites are typically considered to be undifferentiated based on their primary chemical composition and texture. However, recent paleomagnetic investigations of various chondrites indicate that they carry a primary remanence generated by a dynamo, suggesting partial differentiation of their parent planetesimals. The presence of a dynamo within the parent planetesimal of LL chondrites remains uncertain due to the ambiguous origin of the remanent magnetism. Here, we report petrographic, paleomagnetic, and rock magnetic properties for the novel LL6 chondrite NWA 14180. The high metamorphic temperature experienced by NWA 14180 could have removed the pre-accretionary remanence. The fusion crust baked-contact test suggests that NWA 14180 preserves primary magnetic information about its parent body. Alternating field demagnetization results from interior subsamples reveal distinct low- and medium-coercivity components that may represent a viscous remanent magnetization acquired in the geomagnetic field. No natural remanent magnetization was unblocked in the high coercivity range, implying that NWA 14180 cooled in zero-field conditions. Therefore, we suggest that the parent body of NWA 14180 did not have a dynamo. Furthermore, this result suggests that the LL chondrite parent planetesimal accreted later and was smaller in size than other chondrite classes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Geophysical Research: Planets
Journal of Geophysical Research: Planets Earth and Planetary Sciences-Earth and Planetary Sciences (miscellaneous)
CiteScore
8.00
自引率
27.10%
发文量
254
期刊介绍: The Journal of Geophysical Research Planets is dedicated to the publication of new and original research in the broad field of planetary science. Manuscripts concerning planetary geology, geophysics, geochemistry, atmospheres, and dynamics are appropriate for the journal when they increase knowledge about the processes that affect Solar System objects. Manuscripts concerning other planetary systems, exoplanets or Earth are welcome when presented in a comparative planetology perspective. Studies in the field of astrobiology will be considered when they have immediate consequences for the interpretation of planetary data. JGR: Planets does not publish manuscripts that deal with future missions and instrumentation, nor those that are primarily of an engineering interest. Instrument, calibration or data processing papers may be appropriate for the journal, but only when accompanied by scientific analysis and interpretation that increases understanding of the studied object. A manuscript that describes a new method or technique would be acceptable for JGR: Planets if it contained new and relevant scientific results obtained using the method. Review articles are generally not appropriate for JGR: Planets, but they may be considered if they form an integral part of a special issue.
期刊最新文献
Vapor Condensates on the Most Pristine Black Beads From a Clod in Apollo Drive Tube 73001: Discovery of Lunar NaCl Nanocrystals Issue Information The Thermal Structure and Composition of Jupiter's Great Red Spot From JWST/MIRI Observations of Water Frost on Mars With THEMIS: Application to the Presence of Brines and the Stability of (Sub)Surface Water Ice Likely Ferromagnetic Minerals Identified by the Perseverance Rover and Implications for Future Paleomagnetic Analyses of Returned Martian Samples
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1