实现高性能反相包晶石太阳能电池的快速进展

IF 79.8 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Nature Reviews Materials Pub Date : 2024-05-17 DOI:10.1038/s41578-024-00678-x
Qi Jiang, Kai Zhu
{"title":"实现高性能反相包晶石太阳能电池的快速进展","authors":"Qi Jiang, Kai Zhu","doi":"10.1038/s41578-024-00678-x","DOIUrl":null,"url":null,"abstract":"Perovskite solar cells (PSCs) that have a positive–intrinsic–negative (p–i–n, or often referred to as inverted) structure are becoming increasingly attractive for commercialization owing to their rapid increase in power conversion efficiency, easily scalable fabrication, reliable operation and compatibility with various perovskite-based tandem device configurations. Here, we review key material and device considerations for making highly efficient and stable p–i–n PSCs. First, we summarize key advances in charge transport materials, which were critical to the rapid power conversion efficiency progress. Second, we discuss promising perovskite compositions and fabrication methods. We highlight various additive engineering approaches to improve the perovskite layer as well as interface engineering strategies that target either the buried or top perovskite surface layer. Third, we review progress in tandem devices, focusing on optimization of the interconnection layer. Next, we summarize the status and strategies for improving p–i–n PSC stability, especially considering the challenges of outdoor applications. We also provide prospects for future research directions and challenges. Inverted (p–i–n) perovskite solar cells are promising candidates for real-life applications. This Review discusses the current status of this technology, key strategies for stability and efficiency improvements — from the materials selection to interface engineering and device construction — and future outlooks.","PeriodicalId":19081,"journal":{"name":"Nature Reviews Materials","volume":"9 6","pages":"399-419"},"PeriodicalIF":79.8000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rapid advances enabling high-performance inverted perovskite solar cells\",\"authors\":\"Qi Jiang, Kai Zhu\",\"doi\":\"10.1038/s41578-024-00678-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Perovskite solar cells (PSCs) that have a positive–intrinsic–negative (p–i–n, or often referred to as inverted) structure are becoming increasingly attractive for commercialization owing to their rapid increase in power conversion efficiency, easily scalable fabrication, reliable operation and compatibility with various perovskite-based tandem device configurations. Here, we review key material and device considerations for making highly efficient and stable p–i–n PSCs. First, we summarize key advances in charge transport materials, which were critical to the rapid power conversion efficiency progress. Second, we discuss promising perovskite compositions and fabrication methods. We highlight various additive engineering approaches to improve the perovskite layer as well as interface engineering strategies that target either the buried or top perovskite surface layer. Third, we review progress in tandem devices, focusing on optimization of the interconnection layer. Next, we summarize the status and strategies for improving p–i–n PSC stability, especially considering the challenges of outdoor applications. We also provide prospects for future research directions and challenges. Inverted (p–i–n) perovskite solar cells are promising candidates for real-life applications. This Review discusses the current status of this technology, key strategies for stability and efficiency improvements — from the materials selection to interface engineering and device construction — and future outlooks.\",\"PeriodicalId\":19081,\"journal\":{\"name\":\"Nature Reviews Materials\",\"volume\":\"9 6\",\"pages\":\"399-419\"},\"PeriodicalIF\":79.8000,\"publicationDate\":\"2024-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Reviews Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.nature.com/articles/s41578-024-00678-x\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Materials","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41578-024-00678-x","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

具有正-内-负(p-i-n,或通常称为倒置)结构的过氧化物太阳能电池(PSCs)由于其功率转换效率的快速提高、易于扩展的制造工艺、可靠的运行以及与各种基于过氧化物的串联器件配置的兼容性,正变得越来越具有商业化的吸引力。在此,我们回顾了制造高效稳定 pi-i-n PSCs 的关键材料和器件注意事项。首先,我们总结了电荷传输材料方面的主要进展,这些进展对于快速提高功率转换效率至关重要。其次,我们讨论了前景广阔的过氧化物成分和制造方法。我们重点介绍了改进包晶石层的各种添加工程方法,以及针对埋层或顶部包晶石表层的界面工程策略。第三,我们回顾了串联器件方面的进展,重点关注互连层的优化。接下来,我们总结了提高 pi-n PSC 稳定性的现状和策略,特别是考虑到户外应用的挑战。我们还展望了未来的研究方向和挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Rapid advances enabling high-performance inverted perovskite solar cells
Perovskite solar cells (PSCs) that have a positive–intrinsic–negative (p–i–n, or often referred to as inverted) structure are becoming increasingly attractive for commercialization owing to their rapid increase in power conversion efficiency, easily scalable fabrication, reliable operation and compatibility with various perovskite-based tandem device configurations. Here, we review key material and device considerations for making highly efficient and stable p–i–n PSCs. First, we summarize key advances in charge transport materials, which were critical to the rapid power conversion efficiency progress. Second, we discuss promising perovskite compositions and fabrication methods. We highlight various additive engineering approaches to improve the perovskite layer as well as interface engineering strategies that target either the buried or top perovskite surface layer. Third, we review progress in tandem devices, focusing on optimization of the interconnection layer. Next, we summarize the status and strategies for improving p–i–n PSC stability, especially considering the challenges of outdoor applications. We also provide prospects for future research directions and challenges. Inverted (p–i–n) perovskite solar cells are promising candidates for real-life applications. This Review discusses the current status of this technology, key strategies for stability and efficiency improvements — from the materials selection to interface engineering and device construction — and future outlooks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Reviews Materials
Nature Reviews Materials Materials Science-Biomaterials
CiteScore
119.40
自引率
0.40%
发文量
107
期刊介绍: Nature Reviews Materials is an online-only journal that is published weekly. It covers a wide range of scientific disciplines within materials science. The journal includes Reviews, Perspectives, and Comments. Nature Reviews Materials focuses on various aspects of materials science, including the making, measuring, modelling, and manufacturing of materials. It examines the entire process of materials science, from laboratory discovery to the development of functional devices.
期刊最新文献
Efficient catalyst for alkaline water Design of oxide nanoparticles for biomedical applications Modular lattice structures Make metal–organic frameworks safe and sustainable by design for industrial translation Large-scale single MoS2 crystals unlocked
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1