首页 > 最新文献

Nature Reviews Materials最新文献

英文 中文
Palestinian and German researchers meet to strengthen scientific ties
IF 83.5 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-03-06 DOI: 10.1038/s41578-025-00790-6
Giulia Pacchioni
In February 2025, 15 researchers travelled from the West Bank to the Max Planck institute in Stuttgart to engage with German colleagues in discussions about science, the challenges they face in their research and potential collaborations.
{"title":"Palestinian and German researchers meet to strengthen scientific ties","authors":"Giulia Pacchioni","doi":"10.1038/s41578-025-00790-6","DOIUrl":"https://doi.org/10.1038/s41578-025-00790-6","url":null,"abstract":"In February 2025, 15 researchers travelled from the West Bank to the Max Planck institute in Stuttgart to engage with German colleagues in discussions about science, the challenges they face in their research and potential collaborations.","PeriodicalId":19081,"journal":{"name":"Nature Reviews Materials","volume":"91 1","pages":""},"PeriodicalIF":83.5,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143561165","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biodegradable origami soft robot
IF 83.5 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-02-27 DOI: 10.1038/s41578-025-00786-2
Charlotte Allard
An article in Science Advances demonstrates a dual closed-loop robotic system that uses biodegradable materials and features an origami-based design.
科学进展》(Science Advances)上的一篇文章展示了一个双闭环机器人系统,该系统使用可生物降解材料,采用折纸设计。
{"title":"Biodegradable origami soft robot","authors":"Charlotte Allard","doi":"10.1038/s41578-025-00786-2","DOIUrl":"https://doi.org/10.1038/s41578-025-00786-2","url":null,"abstract":"An article in Science Advances demonstrates a dual closed-loop robotic system that uses biodegradable materials and features an origami-based design.","PeriodicalId":19081,"journal":{"name":"Nature Reviews Materials","volume":"1 1","pages":""},"PeriodicalIF":83.5,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143506899","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bridging theory and experiment in defect-tolerant semiconductors for photovoltaics
IF 83.5 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-02-27 DOI: 10.1038/s41578-024-00769-9
Maria S. Hammer, Hannah Schlott, Larry Lüer, Christoph J. Brabec, Mykhailo Sytnyk, Johannes Will, Bernd Meyer, Wolfgang Heiss

Defect tolerance is a concept applied in photovoltaics to explain semiconductors such as lead-halide perovskites that excel without relying on single-crystalline growth. It differentiates from the mere absence of defects, emphasizing on minimizing the influence of defects on minority carrier lifetimes. Whether defect tolerance is the only reason for the superiority of lead-halide-perovskite-based solution-processed solar cells is still controversial. However, the defect tolerance of various semiconductor structures and materials has been experimentally suggested and, in some cases, proven. In this Perspective, we explore defect tolerance across material science, defect characterization and computational modelling. With a primary focus on electrically or optically active defects, we systematically compare computational and experimental results from the literature. We aim to address the complexity arising from diverse theoretical approaches that have yielded partially contradictory results. Additionally, experimental findings have been subject to varied interpretations, ranging from defect signals to ion migration. We endeavour to chart a course through this intricacy and seek to establish a rigorous framework for the identification and quantitative assessment of defect tolerance.

{"title":"Bridging theory and experiment in defect-tolerant semiconductors for photovoltaics","authors":"Maria S. Hammer, Hannah Schlott, Larry Lüer, Christoph J. Brabec, Mykhailo Sytnyk, Johannes Will, Bernd Meyer, Wolfgang Heiss","doi":"10.1038/s41578-024-00769-9","DOIUrl":"https://doi.org/10.1038/s41578-024-00769-9","url":null,"abstract":"<p>Defect tolerance is a concept applied in photovoltaics to explain semiconductors such as lead-halide perovskites that excel without relying on single-crystalline growth. It differentiates from the mere absence of defects, emphasizing on minimizing the influence of defects on minority carrier lifetimes. Whether defect tolerance is the only reason for the superiority of lead-halide-perovskite-based solution-processed solar cells is still controversial. However, the defect tolerance of various semiconductor structures and materials has been experimentally suggested and, in some cases, proven. In this Perspective, we explore defect tolerance across material science, defect characterization and computational modelling. With a primary focus on electrically or optically active defects, we systematically compare computational and experimental results from the literature. We aim to address the complexity arising from diverse theoretical approaches that have yielded partially contradictory results. Additionally, experimental findings have been subject to varied interpretations, ranging from defect signals to ion migration. We endeavour to chart a course through this intricacy and seek to establish a rigorous framework for the identification and quantitative assessment of defect tolerance.</p>","PeriodicalId":19081,"journal":{"name":"Nature Reviews Materials","volume":"31 1","pages":""},"PeriodicalIF":83.5,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143506947","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A kosmotropic solution to cathode manufacturing
IF 83.5 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-02-27 DOI: 10.1038/s41578-025-00788-0
Ariane Vartanian
An article in Nature Communications reports an aqueous processing solution, based on the kosmotropic effect, that enables the sustainable and cost-effective manufacturing of lithium-ion battery cathodes.
{"title":"A kosmotropic solution to cathode manufacturing","authors":"Ariane Vartanian","doi":"10.1038/s41578-025-00788-0","DOIUrl":"https://doi.org/10.1038/s41578-025-00788-0","url":null,"abstract":"An article in Nature Communications reports an aqueous processing solution, based on the kosmotropic effect, that enables the sustainable and cost-effective manufacturing of lithium-ion battery cathodes.","PeriodicalId":19081,"journal":{"name":"Nature Reviews Materials","volume":"10 1","pages":""},"PeriodicalIF":83.5,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143506946","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Low-cost recycling of perovskite photovoltaics
IF 83.5 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-02-26 DOI: 10.1038/s41578-025-00787-1
Giulia Pacchioni
An article in Nature introduces a recycling strategy for perovskite photovoltaics based on green solvents, achieving high recycling efficiency and purity while mitigating environmental impacts.
{"title":"Low-cost recycling of perovskite photovoltaics","authors":"Giulia Pacchioni","doi":"10.1038/s41578-025-00787-1","DOIUrl":"https://doi.org/10.1038/s41578-025-00787-1","url":null,"abstract":"An article in Nature introduces a recycling strategy for perovskite photovoltaics based on green solvents, achieving high recycling efficiency and purity while mitigating environmental impacts.","PeriodicalId":19081,"journal":{"name":"Nature Reviews Materials","volume":"26 1","pages":""},"PeriodicalIF":83.5,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143495242","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Publisher Correction: Materials for high-temperature digital electronics
IF 83.5 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-02-24 DOI: 10.1038/s41578-025-00789-z
Dhiren K. Pradhan, David C. Moore, A. Matt Francis, Jacob Kupernik, W. Joshua Kennedy, Nicholas R. Glavin, Roy H. Olsson, Deep Jariwala

Correction to: Nature Reviews Materials https://doi.org/10.1038/s41578-024-00731-9, published online 18 October 2024.

{"title":"Publisher Correction: Materials for high-temperature digital electronics","authors":"Dhiren K. Pradhan, David C. Moore, A. Matt Francis, Jacob Kupernik, W. Joshua Kennedy, Nicholas R. Glavin, Roy H. Olsson, Deep Jariwala","doi":"10.1038/s41578-025-00789-z","DOIUrl":"https://doi.org/10.1038/s41578-025-00789-z","url":null,"abstract":"<p>Correction to: <i>Nature Reviews Materials</i> https://doi.org/10.1038/s41578-024-00731-9, published online 18 October 2024.</p>","PeriodicalId":19081,"journal":{"name":"Nature Reviews Materials","volume":"13 1","pages":""},"PeriodicalIF":83.5,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143477350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Resilience pathways for halide perovskite photovoltaics under temperature cycling
IF 83.5 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-02-19 DOI: 10.1038/s41578-025-00781-7
Luyan Wu, Shuaifeng Hu, Feng Yang, Guixiang Li, Junke Wang, Weiwei Zuo, José J. Jerónimo-Rendon, Silver-Hamill Turren-Cruz, Michele Saba, Michael Saliba, Mohammad Khaja Nazeeruddin, Jorge Pascual, Meng Li, Antonio Abate

Metal-halide perovskite solar cells have achieved power conversion efficiencies comparable to those of silicon photovoltaic (PV) devices, approaching 27% for single-junction devices. The durability of the devices, however, lags far behind their performance. Their practical implementation implies the subjection of the material and devices to temperature cycles of varying intensity, driven by diurnal cycles or geographical characteristics. Thus, it is vital to develop devices that are resilient to temperature cycling. This Perspective analyses the behaviour of perovskite devices under temperature cycling. We discuss the crystallographic structural evolution of the perovskite layer, reactions and/or interactions among stacked layers, PV properties and photocatalysed thermal reactions. We highlight effective strategies for improving stability under temperature cycling, such as enhancing material crystallinity or relieving interlayer thermal stress using buffer layers. Additionally, we outline existing standards and protocols for temperature cycling testing and we propose a unified approach that could facilitate valuable cross-study comparisons among scientific and industrial research laboratories. Finally, we share our outlook on strategies to develop perovskite PV devices with exceptional real-world operating stability.

{"title":"Resilience pathways for halide perovskite photovoltaics under temperature cycling","authors":"Luyan Wu, Shuaifeng Hu, Feng Yang, Guixiang Li, Junke Wang, Weiwei Zuo, José J. Jerónimo-Rendon, Silver-Hamill Turren-Cruz, Michele Saba, Michael Saliba, Mohammad Khaja Nazeeruddin, Jorge Pascual, Meng Li, Antonio Abate","doi":"10.1038/s41578-025-00781-7","DOIUrl":"https://doi.org/10.1038/s41578-025-00781-7","url":null,"abstract":"<p>Metal-halide perovskite solar cells have achieved power conversion efficiencies comparable to those of silicon photovoltaic (PV) devices, approaching 27% for single-junction devices. The durability of the devices, however, lags far behind their performance. Their practical implementation implies the subjection of the material and devices to temperature cycles of varying intensity, driven by diurnal cycles or geographical characteristics. Thus, it is vital to develop devices that are resilient to temperature cycling. This Perspective analyses the behaviour of perovskite devices under temperature cycling. We discuss the crystallographic structural evolution of the perovskite layer, reactions and/or interactions among stacked layers, PV properties and photocatalysed thermal reactions. We highlight effective strategies for improving stability under temperature cycling, such as enhancing material crystallinity or relieving interlayer thermal stress using buffer layers. Additionally, we outline existing standards and protocols for temperature cycling testing and we propose a unified approach that could facilitate valuable cross-study comparisons among scientific and industrial research laboratories. Finally, we share our outlook on strategies to develop perovskite PV devices with exceptional real-world operating stability.</p>","PeriodicalId":19081,"journal":{"name":"Nature Reviews Materials","volume":"14 1","pages":""},"PeriodicalIF":83.5,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143443723","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Altermagnets as a new class of functional materials
IF 83.5 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-02-14 DOI: 10.1038/s41578-025-00779-1
Cheng Song, Hua Bai, Zhiyuan Zhou, Lei Han, Helena Reichlova, J. Hugo Dil, Junwei Liu, Xianzhe Chen, Feng Pan

Altermagnets are characterized by non-relativistic alternating spin splitting in the band structure and collinear compensated magnetic moments in real space. They combine the advantages of ferromagnetic and antiferromagnetic order, exhibiting time-reversal symmetry-breaking magneto responses, vanishing stray fields and high-frequency spin dynamics. Consequently, altermagnets hold great potential for various research fields, especially for developing spintronic devices such as high-density magnetic memories and terahertz nano-oscillators. Furthermore, altermagnetism is found in a broad spectrum of materials, including metals, semiconductors, insulators and superconductors, thereby stimulating widespread interest in functional material research. In this Perspective, we provide an overview of recent experimental progress in altermagnets, focusing particularly on observations of lifted spin degeneracy via spectroscopic techniques and the resultant spin transport phenomena. Additionally, we discuss future research directions in altermagnets, encompassing fields such as spintronics, magnonics, ultrafast photonics and phononics, and properties such as superconductivity, topology and multiferroicity.

反铁磁体的特点是带状结构中的非相对论交变自旋分裂和实际空间中的共线补偿磁矩。它们结合了铁磁性和反铁磁性的优点,表现出时间反转对称破磁反应、消失的杂散磁场和高频自旋动力学。因此,变磁体在各个研究领域都具有巨大潜力,特别是在开发高密度磁存储器和太赫兹纳米振荡器等自旋电子器件方面。此外,变磁体还存在于金属、半导体、绝缘体和超导体等多种材料中,从而激发了人们对功能材料研究的广泛兴趣。在本《视角》中,我们将概述变磁体的最新实验进展,尤其侧重于通过光谱技术观察提升的自旋变性以及由此产生的自旋输运现象。此外,我们还讨论了变磁体的未来研究方向,包括自旋电子学、磁学、超快光子学和声子学等领域,以及超导性、拓扑学和多铁性等特性。
{"title":"Altermagnets as a new class of functional materials","authors":"Cheng Song, Hua Bai, Zhiyuan Zhou, Lei Han, Helena Reichlova, J. Hugo Dil, Junwei Liu, Xianzhe Chen, Feng Pan","doi":"10.1038/s41578-025-00779-1","DOIUrl":"https://doi.org/10.1038/s41578-025-00779-1","url":null,"abstract":"<p>Altermagnets are characterized by non-relativistic alternating spin splitting in the band structure and collinear compensated magnetic moments in real space. They combine the advantages of ferromagnetic and antiferromagnetic order, exhibiting time-reversal symmetry-breaking magneto responses, vanishing stray fields and high-frequency spin dynamics. Consequently, altermagnets hold great potential for various research fields, especially for developing spintronic devices such as high-density magnetic memories and terahertz nano-oscillators. Furthermore, altermagnetism is found in a broad spectrum of materials, including metals, semiconductors, insulators and superconductors, thereby stimulating widespread interest in functional material research. In this Perspective, we provide an overview of recent experimental progress in altermagnets, focusing particularly on observations of lifted spin degeneracy via spectroscopic techniques and the resultant spin transport phenomena. Additionally, we discuss future research directions in altermagnets, encompassing fields such as spintronics, magnonics, ultrafast photonics and phononics, and properties such as superconductivity, topology and multiferroicity.</p>","PeriodicalId":19081,"journal":{"name":"Nature Reviews Materials","volume":"3 1","pages":""},"PeriodicalIF":83.5,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143418402","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chalcogens for high-energy batteries
IF 83.5 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-02-11 DOI: 10.1038/s41578-025-00773-7
Ze Chen, Chunyi Zhi

Rapid developments in electric vehicles and portable electronic devices have fuelled demand for high-energy batteries. Along these lines, chalcogen-driven static conversion batteries (CSCBs), which operate by multielectron transfer, are attracting attention from academia and industry. Because of their high capacity and high voltage output, CSCBs are promising for efficient energy-storage applications. This Review surveys efforts to implement chalcogens with multivalent conversion as the high-energy redox-active component in various rechargeable batteries. First, we examine the evolution of CSCBs and summarize the merits and limitations of these batteries. Subsequently, we discuss state-of-the-art redox mechanisms, approaches for multivalent conversion activation, problems faced in using CSCBs and strategies for enhancing their performance. We also describe the potential of using chalcogens with multivalent conversion chemistry for halogen fixation in reversible multistage processes. Finally, we cover the challenges associated with the design of high-performance CSCBs and provide guidelines for their future design.

{"title":"Chalcogens for high-energy batteries","authors":"Ze Chen, Chunyi Zhi","doi":"10.1038/s41578-025-00773-7","DOIUrl":"https://doi.org/10.1038/s41578-025-00773-7","url":null,"abstract":"<p>Rapid developments in electric vehicles and portable electronic devices have fuelled demand for high-energy batteries. Along these lines, chalcogen-driven static conversion batteries (CSCBs), which operate by multielectron transfer, are attracting attention from academia and industry. Because of their high capacity and high voltage output, CSCBs are promising for efficient energy-storage applications. This Review surveys efforts to implement chalcogens with multivalent conversion as the high-energy redox-active component in various rechargeable batteries. First, we examine the evolution of CSCBs and summarize the merits and limitations of these batteries. Subsequently, we discuss state-of-the-art redox mechanisms, approaches for multivalent conversion activation, problems faced in using CSCBs and strategies for enhancing their performance. We also describe the potential of using chalcogens with multivalent conversion chemistry for halogen fixation in reversible multistage processes. Finally, we cover the challenges associated with the design of high-performance CSCBs and provide guidelines for their future design.</p>","PeriodicalId":19081,"journal":{"name":"Nature Reviews Materials","volume":"63 1","pages":""},"PeriodicalIF":83.5,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143393101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Visible-to-THz near-field nanoscopy
IF 83.5 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Pub Date : 2025-02-10 DOI: 10.1038/s41578-024-00761-3
Rainer Hillenbrand, Yohannes Abate, Mengkun Liu, Xinzhong Chen, D. N. Basov

Optical microscopy has a key role in research, development and quality control across a wide range of scientific, technological and medical fields. However, diffraction limits the spatial resolution of conventional optical instruments to about half the illumination wavelength. A technique that surpasses the diffraction limit in the wide spectral range between visible and terahertz frequencies is scattering-type scanning near-field optical microscopy (s-SNOM). The basis of s-SNOM is an atomic force microscope in which the tip is illuminated with light from the visible to the terahertz spectral range. By recording the elastically tip-scattered light while scanning the sample below the tip, s-SNOM yields near-field optical images with a remarkable resolution of 10 nm, simultaneously with the standard atomic force microscopic topography image. This resolution is independent of the illumination wavelength, rendering s-SNOM a versatile nanoimaging and nanospectroscopy technique for fundamental and applied studies of materials, structures and phenomena. This Review presents an overview of the fundamental principles governing the measurement and interpretation of near-field contrasts and discusses key applications of s-SNOM. We also showcase emerging developments that enable s-SNOM to operate under various environmental conditions, including cryogenic temperatures, electric and magnetic fields, electrical currents, strain and liquid environments. All these recent developments broaden the applicability of s-SNOMs for exploring fundamental solid-state and quantum phenomena, biological matter, catalytic reactions and more.

{"title":"Visible-to-THz near-field nanoscopy","authors":"Rainer Hillenbrand, Yohannes Abate, Mengkun Liu, Xinzhong Chen, D. N. Basov","doi":"10.1038/s41578-024-00761-3","DOIUrl":"https://doi.org/10.1038/s41578-024-00761-3","url":null,"abstract":"<p>Optical microscopy has a key role in research, development and quality control across a wide range of scientific, technological and medical fields. However, diffraction limits the spatial resolution of conventional optical instruments to about half the illumination wavelength. A technique that surpasses the diffraction limit in the wide spectral range between visible and terahertz frequencies is scattering-type scanning near-field optical microscopy (s-SNOM). The basis of s-SNOM is an atomic force microscope in which the tip is illuminated with light from the visible to the terahertz spectral range. By recording the elastically tip-scattered light while scanning the sample below the tip, s-SNOM yields near-field optical images with a remarkable resolution of 10 nm, simultaneously with the standard atomic force microscopic topography image. This resolution is independent of the illumination wavelength, rendering s-SNOM a versatile nanoimaging and nanospectroscopy technique for fundamental and applied studies of materials, structures and phenomena. This Review presents an overview of the fundamental principles governing the measurement and interpretation of near-field contrasts and discusses key applications of s-SNOM. We also showcase emerging developments that enable s-SNOM to operate under various environmental conditions, including cryogenic temperatures, electric and magnetic fields, electrical currents, strain and liquid environments. All these recent developments broaden the applicability of s-SNOMs for exploring fundamental solid-state and quantum phenomena, biological matter, catalytic reactions and more.</p>","PeriodicalId":19081,"journal":{"name":"Nature Reviews Materials","volume":"55 1","pages":""},"PeriodicalIF":83.5,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143375150","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nature Reviews Materials
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1