Benjamin Howes, Manuela González-Suárez, Cristina Banks-Leite, Flavia C. Bellotto-Trigo, Matthew G. Betts
{"title":"陆生脊椎动物森林物种比例的全球纬度梯度","authors":"Benjamin Howes, Manuela González-Suárez, Cristina Banks-Leite, Flavia C. Bellotto-Trigo, Matthew G. Betts","doi":"10.1111/geb.13854","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Aim</h3>\n \n <p>Global patterns in species distributions such as the latitudinal biodiversity gradient are of great interest to ecologists and have been thoroughly studied. Whether such a gradient holds true for the proportion of species associated with key ecotypes such as forests is however unknown. Identifying a gradient and ascertaining the factors causing it could further our understanding of community sensitivity to deforestation and uncover drivers of habitat specialization. The null hypothesis is that proportions of forest species remain globally consistent, though we hypothesize that proportions will change with differences in ecotype amount, spatial structure, and environmental stability. Here we study whether the proportion of forest species follows a latitudinal gradient, and test hypotheses for why this may occur.</p>\n </section>\n \n <section>\n \n <h3> Location</h3>\n \n <p>Worldwide.</p>\n </section>\n \n <section>\n \n <h3> Time period</h3>\n \n <p>Present.</p>\n </section>\n \n <section>\n \n <h3> Major taxa studied</h3>\n \n <p>Terrestrial vertebrates.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>We combined range maps and habitat use data for all terrestrial vertebrates to calculate the proportion of forest species in an area. We then used data on the global distribution of current, recent historical, and long-term historical forest cover, as well as maps of global disturbances and plant diversity to test our hypotheses using generalized linear models.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>We identified a latitudinal gradient in the proportion of forest species whereby the highest proportions occurred at the equator and decreased polewards. We additionally found that the proportion of forest species increased with current forest cover, historical deforestation, plant structural complexity, and habitat stability. Despite the inclusion of these variables, the strong latitudinal gradient remained, suggesting additional causes of the gradient.</p>\n </section>\n \n <section>\n \n <h3> Main conclusions</h3>\n \n <p>Our findings suggest that the global distribution of the proportion of forest species is a result of recent ecological, as well as long-term evolutionary factors. Interestingly, high proportions of forest species were found in areas that experienced historical deforestation, suggesting a lagged response to such perturbations and potential extinction debt.</p>\n </section>\n </div>","PeriodicalId":176,"journal":{"name":"Global Ecology and Biogeography","volume":"33 7","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/geb.13854","citationCount":"0","resultStr":"{\"title\":\"A global latitudinal gradient in the proportion of terrestrial vertebrate forest species\",\"authors\":\"Benjamin Howes, Manuela González-Suárez, Cristina Banks-Leite, Flavia C. Bellotto-Trigo, Matthew G. Betts\",\"doi\":\"10.1111/geb.13854\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Aim</h3>\\n \\n <p>Global patterns in species distributions such as the latitudinal biodiversity gradient are of great interest to ecologists and have been thoroughly studied. Whether such a gradient holds true for the proportion of species associated with key ecotypes such as forests is however unknown. Identifying a gradient and ascertaining the factors causing it could further our understanding of community sensitivity to deforestation and uncover drivers of habitat specialization. The null hypothesis is that proportions of forest species remain globally consistent, though we hypothesize that proportions will change with differences in ecotype amount, spatial structure, and environmental stability. Here we study whether the proportion of forest species follows a latitudinal gradient, and test hypotheses for why this may occur.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Location</h3>\\n \\n <p>Worldwide.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Time period</h3>\\n \\n <p>Present.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Major taxa studied</h3>\\n \\n <p>Terrestrial vertebrates.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>We combined range maps and habitat use data for all terrestrial vertebrates to calculate the proportion of forest species in an area. We then used data on the global distribution of current, recent historical, and long-term historical forest cover, as well as maps of global disturbances and plant diversity to test our hypotheses using generalized linear models.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>We identified a latitudinal gradient in the proportion of forest species whereby the highest proportions occurred at the equator and decreased polewards. We additionally found that the proportion of forest species increased with current forest cover, historical deforestation, plant structural complexity, and habitat stability. Despite the inclusion of these variables, the strong latitudinal gradient remained, suggesting additional causes of the gradient.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Main conclusions</h3>\\n \\n <p>Our findings suggest that the global distribution of the proportion of forest species is a result of recent ecological, as well as long-term evolutionary factors. Interestingly, high proportions of forest species were found in areas that experienced historical deforestation, suggesting a lagged response to such perturbations and potential extinction debt.</p>\\n </section>\\n </div>\",\"PeriodicalId\":176,\"journal\":{\"name\":\"Global Ecology and Biogeography\",\"volume\":\"33 7\",\"pages\":\"\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/geb.13854\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Ecology and Biogeography\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/geb.13854\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Ecology and Biogeography","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/geb.13854","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
A global latitudinal gradient in the proportion of terrestrial vertebrate forest species
Aim
Global patterns in species distributions such as the latitudinal biodiversity gradient are of great interest to ecologists and have been thoroughly studied. Whether such a gradient holds true for the proportion of species associated with key ecotypes such as forests is however unknown. Identifying a gradient and ascertaining the factors causing it could further our understanding of community sensitivity to deforestation and uncover drivers of habitat specialization. The null hypothesis is that proportions of forest species remain globally consistent, though we hypothesize that proportions will change with differences in ecotype amount, spatial structure, and environmental stability. Here we study whether the proportion of forest species follows a latitudinal gradient, and test hypotheses for why this may occur.
Location
Worldwide.
Time period
Present.
Major taxa studied
Terrestrial vertebrates.
Methods
We combined range maps and habitat use data for all terrestrial vertebrates to calculate the proportion of forest species in an area. We then used data on the global distribution of current, recent historical, and long-term historical forest cover, as well as maps of global disturbances and plant diversity to test our hypotheses using generalized linear models.
Results
We identified a latitudinal gradient in the proportion of forest species whereby the highest proportions occurred at the equator and decreased polewards. We additionally found that the proportion of forest species increased with current forest cover, historical deforestation, plant structural complexity, and habitat stability. Despite the inclusion of these variables, the strong latitudinal gradient remained, suggesting additional causes of the gradient.
Main conclusions
Our findings suggest that the global distribution of the proportion of forest species is a result of recent ecological, as well as long-term evolutionary factors. Interestingly, high proportions of forest species were found in areas that experienced historical deforestation, suggesting a lagged response to such perturbations and potential extinction debt.
期刊介绍:
Global Ecology and Biogeography (GEB) welcomes papers that investigate broad-scale (in space, time and/or taxonomy), general patterns in the organization of ecological systems and assemblages, and the processes that underlie them. In particular, GEB welcomes studies that use macroecological methods, comparative analyses, meta-analyses, reviews, spatial analyses and modelling to arrive at general, conceptual conclusions. Studies in GEB need not be global in spatial extent, but the conclusions and implications of the study must be relevant to ecologists and biogeographers globally, rather than being limited to local areas, or specific taxa. Similarly, GEB is not limited to spatial studies; we are equally interested in the general patterns of nature through time, among taxa (e.g., body sizes, dispersal abilities), through the course of evolution, etc. Further, GEB welcomes papers that investigate general impacts of human activities on ecological systems in accordance with the above criteria.