{"title":"不同来源的外泌体对肺癌进展的影响机制研究","authors":"Guangxian Mao, Jixian Liu","doi":"10.1002/tox.24292","DOIUrl":null,"url":null,"abstract":"<p>As a key regulator of intercellular communication, exosomes are essential for tumor cells. In our study, we will explore the mechanisms of exosomes from different sources on lung cancer. We isolated CD8<sup>+</sup>T cells and cancer-associated fibroblasts (CAFs) from venous blood and tumor tissues of lung cancer patients, and isolated exosomes. MiR-2682 was high expression in CD8<sup>+</sup>T-derived exosomes, and lncRNA-FOXD3-AS1 was upregulated in CAF-derived exosomes. Online bioinformatics database analysis showed that RNA Binding Motif Protein 39 (RBM39) was identified as the target of miR-2682, and eukaryotic translation initiation factors 3B (EIF3B) was identified as the RNA binding protein of FOXD3-AS1. CD8<sup>+</sup>T-derived exosomes inhibited the growth of A549 cells and promoted apoptosis, while miR-2682 inhibits reversed these effects of CD8<sup>+</sup>T-derived exosomes. CAF-derived exosomes promoted the growth of A549 cells and inhibited apoptosis, while FOXD3-AS1 siRNA reversed the effect of CAF-derived exosomes. Mechanism studies have found that miR-2682 inhibits the growth of lung cancer cells by inhibiting the expression of RBM39. FOXD3-AS1 promoted the growth of lung cancer cells by binding to EIF3B. In vivo experiments showed that CD8<sup>+</sup>T cell-derived exosome miR-2682 inhibited lung cancer tumor formation, while CAF-derived exosome FOXD3-AS1 promoted lung cancer tumor formation. This study provides mechanistic insights into the role of miR-2682 and FOXD3-AS1 in lung cancer progression and provides new strategies for lung cancer treatment.</p>","PeriodicalId":11756,"journal":{"name":"Environmental Toxicology","volume":"39 8","pages":"4231-4248"},"PeriodicalIF":4.4000,"publicationDate":"2024-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on the mechanism of exosomes from different sources influencing the progression of lung cancer\",\"authors\":\"Guangxian Mao, Jixian Liu\",\"doi\":\"10.1002/tox.24292\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>As a key regulator of intercellular communication, exosomes are essential for tumor cells. In our study, we will explore the mechanisms of exosomes from different sources on lung cancer. We isolated CD8<sup>+</sup>T cells and cancer-associated fibroblasts (CAFs) from venous blood and tumor tissues of lung cancer patients, and isolated exosomes. MiR-2682 was high expression in CD8<sup>+</sup>T-derived exosomes, and lncRNA-FOXD3-AS1 was upregulated in CAF-derived exosomes. Online bioinformatics database analysis showed that RNA Binding Motif Protein 39 (RBM39) was identified as the target of miR-2682, and eukaryotic translation initiation factors 3B (EIF3B) was identified as the RNA binding protein of FOXD3-AS1. CD8<sup>+</sup>T-derived exosomes inhibited the growth of A549 cells and promoted apoptosis, while miR-2682 inhibits reversed these effects of CD8<sup>+</sup>T-derived exosomes. CAF-derived exosomes promoted the growth of A549 cells and inhibited apoptosis, while FOXD3-AS1 siRNA reversed the effect of CAF-derived exosomes. Mechanism studies have found that miR-2682 inhibits the growth of lung cancer cells by inhibiting the expression of RBM39. FOXD3-AS1 promoted the growth of lung cancer cells by binding to EIF3B. In vivo experiments showed that CD8<sup>+</sup>T cell-derived exosome miR-2682 inhibited lung cancer tumor formation, while CAF-derived exosome FOXD3-AS1 promoted lung cancer tumor formation. This study provides mechanistic insights into the role of miR-2682 and FOXD3-AS1 in lung cancer progression and provides new strategies for lung cancer treatment.</p>\",\"PeriodicalId\":11756,\"journal\":{\"name\":\"Environmental Toxicology\",\"volume\":\"39 8\",\"pages\":\"4231-4248\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/tox.24292\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Toxicology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/tox.24292","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Research on the mechanism of exosomes from different sources influencing the progression of lung cancer
As a key regulator of intercellular communication, exosomes are essential for tumor cells. In our study, we will explore the mechanisms of exosomes from different sources on lung cancer. We isolated CD8+T cells and cancer-associated fibroblasts (CAFs) from venous blood and tumor tissues of lung cancer patients, and isolated exosomes. MiR-2682 was high expression in CD8+T-derived exosomes, and lncRNA-FOXD3-AS1 was upregulated in CAF-derived exosomes. Online bioinformatics database analysis showed that RNA Binding Motif Protein 39 (RBM39) was identified as the target of miR-2682, and eukaryotic translation initiation factors 3B (EIF3B) was identified as the RNA binding protein of FOXD3-AS1. CD8+T-derived exosomes inhibited the growth of A549 cells and promoted apoptosis, while miR-2682 inhibits reversed these effects of CD8+T-derived exosomes. CAF-derived exosomes promoted the growth of A549 cells and inhibited apoptosis, while FOXD3-AS1 siRNA reversed the effect of CAF-derived exosomes. Mechanism studies have found that miR-2682 inhibits the growth of lung cancer cells by inhibiting the expression of RBM39. FOXD3-AS1 promoted the growth of lung cancer cells by binding to EIF3B. In vivo experiments showed that CD8+T cell-derived exosome miR-2682 inhibited lung cancer tumor formation, while CAF-derived exosome FOXD3-AS1 promoted lung cancer tumor formation. This study provides mechanistic insights into the role of miR-2682 and FOXD3-AS1 in lung cancer progression and provides new strategies for lung cancer treatment.
期刊介绍:
The journal publishes in the areas of toxicity and toxicology of environmental pollutants in air, dust, sediment, soil and water, and natural toxins in the environment.Of particular interest are:
Toxic or biologically disruptive impacts of anthropogenic chemicals such as pharmaceuticals, industrial organics, agricultural chemicals, and by-products such as chlorinated compounds from water disinfection and waste incineration;
Natural toxins and their impacts;
Biotransformation and metabolism of toxigenic compounds, food chains for toxin accumulation or biodegradation;
Assays of toxicity, endocrine disruption, mutagenicity, carcinogenicity, ecosystem impact and health hazard;
Environmental and public health risk assessment, environmental guidelines, environmental policy for toxicants.