Hepatocellular carcinoma (HCC) is the most common primary hepatic malignant tumor, and it ranks 2nd in terms of mortality rate among all malignancies in Taiwan. Sorafenib is a multiple tyrosine kinase inhibitor that suppresses tumor cell proliferation and angiogenesis around tumors via different pathways. However, the survival outcome of advanced HCC patients treated with sorafenib is still unsatisfactory. Unfortunately, there are no clinically applicable biomarkers to predict sorafenib therapeutic efficiency in HCC thus far. We found that serpin peptidase inhibitor, clade G, member 1 (SERPING1) is highly associated with overall and recurrence-free survival rates in HCC patients and is also highly correlated with several clinical parameters. SERPING1 expression was increased with sorafenib in both the HCC cell extract and conditioned medium, which was also observed in sorafenib-resistant HepG2 and Huh7 cells. Sorafenib decreased cell viability and migration, which was similar to the effect of SERPING1 in HCC progression. Moreover, sorafenib inhibited both MMP-2 and MMP-9 activity and enhanced the expression of p-ERK in HCC cells. In summary, sorafenib reduces HCC cancer progression might through the p-ERK-MMP-2-MMP-9 cascade via upregulation of SERPING1. In the present study, the roles and molecular mechanisms of SERPING1 and its value as a marker for predicting sorafenib resistance and progression in HCC patients were examined. The results of the present study provide a deep understanding of the roles of SERPING1 in HCC sorafenib resistance, which can be applied to develop early diagnosis and prognosis evaluation methods and establish novel therapeutic targets for specifically treating HCC.
{"title":"SERPING1 Reduces Cell Migration via ERK-MMP2-MMP-9 Cascade in Sorafenib- Resistant Hepatocellular Carcinoma.","authors":"Ching-Chuan Hsieh, Yuh-Harn Wu, Yi-Li Chen, Chun-I Wang, Chao-Jen Li, I-Hsiu Liu, Chen-Wei Chou, Yang-Hsiang Lin, Po-Shuan Huang, Te-Chia Huang, Cheng-Yi Chen","doi":"10.1002/tox.24434","DOIUrl":"10.1002/tox.24434","url":null,"abstract":"<p><p>Hepatocellular carcinoma (HCC) is the most common primary hepatic malignant tumor, and it ranks 2nd in terms of mortality rate among all malignancies in Taiwan. Sorafenib is a multiple tyrosine kinase inhibitor that suppresses tumor cell proliferation and angiogenesis around tumors via different pathways. However, the survival outcome of advanced HCC patients treated with sorafenib is still unsatisfactory. Unfortunately, there are no clinically applicable biomarkers to predict sorafenib therapeutic efficiency in HCC thus far. We found that serpin peptidase inhibitor, clade G, member 1 (SERPING1) is highly associated with overall and recurrence-free survival rates in HCC patients and is also highly correlated with several clinical parameters. SERPING1 expression was increased with sorafenib in both the HCC cell extract and conditioned medium, which was also observed in sorafenib-resistant HepG2 and Huh7 cells. Sorafenib decreased cell viability and migration, which was similar to the effect of SERPING1 in HCC progression. Moreover, sorafenib inhibited both MMP-2 and MMP-9 activity and enhanced the expression of p-ERK in HCC cells. In summary, sorafenib reduces HCC cancer progression might through the p-ERK-MMP-2-MMP-9 cascade via upregulation of SERPING1. In the present study, the roles and molecular mechanisms of SERPING1 and its value as a marker for predicting sorafenib resistance and progression in HCC patients were examined. The results of the present study provide a deep understanding of the roles of SERPING1 in HCC sorafenib resistance, which can be applied to develop early diagnosis and prognosis evaluation methods and establish novel therapeutic targets for specifically treating HCC.</p>","PeriodicalId":11756,"journal":{"name":"Environmental Toxicology","volume":" ","pages":"318-327"},"PeriodicalIF":4.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11726270/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142544454","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01Epub Date: 2024-10-03DOI: 10.1002/tox.24425
Weilin Mao, Yan Liu, Wei Gu, Wenchao Xu, Jihong Liu, Qing Ling, Jiaxin Wang
Di (2-ethylhexyl) phthalate (DEHP) is an important plasticizer in industrial production, and its toxic effects on testes are widely recognized. Se-methylselenocysteine (SMC) is a major selenium compound found in selenium-rich plants, which possesses unique biological properties such as antioxidants. However, the effect of SMC on DEHP-induced testicular injury and the specific mechanism remains unknown. In this study, 50 mice were randomly divided into 5 groups and were given corn oil (Control), DEHP, low-dose SMC (L-SMC), moderate-dose SMC (M-SMC), or high-dose SMC (H-SMC). The sperm quality of the mice in each group was determined, and HE staining and transmission electron microscopy (TEM) were applied to observe testicular morphology, and testicular tissues were collected for the subsequent molecular biological analyses. The TM4 cell line was applied in vitro for mechanism validation. Our results showed that DEHP could lead to decreased sperm quality and blood-testis barrier damage in mice, which could be alleviated by SMC. Mitochondrial damage accompanied by accumulation of total iron content, MDA, and 4-HNE, as well as downregulation of antioxidants SOD, GSH, and GSH-Px were observed after DEHP treatment, which exhibited a typical ferroptosis feature. In vitro experiments confirmed that SMC promoted upregulation of GPX4 in TM4 cells and was able to alleviate DEHP metabolite MEHP-induced ferroptosis and promote the expression of cell junction key proteins ZO-1, Occludin, and Connexin 43, which could be inhibited by the GPX4 inhibitor RSL3 or the Nrf2 inhibitor ML385. Overall, the above results suggest that SMC ameliorates the DEHP-induced ferroptosis in testicular Sertoli cells, protects the blood-testis barrier, and prevents sperm aberrations via the Nrf2/GPX4 axis.
{"title":"Se-Methylselenocysteine Ameliorates DEHP-Induced Ferroptosis in Testicular Sertoli Cells via the Nrf2/GPX4 Axis.","authors":"Weilin Mao, Yan Liu, Wei Gu, Wenchao Xu, Jihong Liu, Qing Ling, Jiaxin Wang","doi":"10.1002/tox.24425","DOIUrl":"10.1002/tox.24425","url":null,"abstract":"<p><p>Di (2-ethylhexyl) phthalate (DEHP) is an important plasticizer in industrial production, and its toxic effects on testes are widely recognized. Se-methylselenocysteine (SMC) is a major selenium compound found in selenium-rich plants, which possesses unique biological properties such as antioxidants. However, the effect of SMC on DEHP-induced testicular injury and the specific mechanism remains unknown. In this study, 50 mice were randomly divided into 5 groups and were given corn oil (Control), DEHP, low-dose SMC (L-SMC), moderate-dose SMC (M-SMC), or high-dose SMC (H-SMC). The sperm quality of the mice in each group was determined, and HE staining and transmission electron microscopy (TEM) were applied to observe testicular morphology, and testicular tissues were collected for the subsequent molecular biological analyses. The TM4 cell line was applied in vitro for mechanism validation. Our results showed that DEHP could lead to decreased sperm quality and blood-testis barrier damage in mice, which could be alleviated by SMC. Mitochondrial damage accompanied by accumulation of total iron content, MDA, and 4-HNE, as well as downregulation of antioxidants SOD, GSH, and GSH-Px were observed after DEHP treatment, which exhibited a typical ferroptosis feature. In vitro experiments confirmed that SMC promoted upregulation of GPX4 in TM4 cells and was able to alleviate DEHP metabolite MEHP-induced ferroptosis and promote the expression of cell junction key proteins ZO-1, Occludin, and Connexin 43, which could be inhibited by the GPX4 inhibitor RSL3 or the Nrf2 inhibitor ML385. Overall, the above results suggest that SMC ameliorates the DEHP-induced ferroptosis in testicular Sertoli cells, protects the blood-testis barrier, and prevents sperm aberrations via the Nrf2/GPX4 axis.</p>","PeriodicalId":11756,"journal":{"name":"Environmental Toxicology","volume":" ","pages":"191-203"},"PeriodicalIF":4.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142364897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01Epub Date: 2024-11-20DOI: 10.1002/tox.24431
Damilare Emmanuel Rotimi, Olusola Olalekan Elekofehinti, Olarewaju Michael Oluba, Oluyomi Stephen Adeyemi
Plantain has been reported to enhance testicular function indices, however, the mechanism remains unknown. The present study investigated the action mechanisms of a plantain-based diet in the treatment of rat testicular dysfunction caused by exposure to atrazine (ATZ). The rats were grouped into 10 groups (5 rats each); control group, 50% plantain-based diet (50% PBD), 25% PBD, 12.5% PBD, quercetin (QUE), ATZ only, 50% PBD + ATZ, 25% PBD + ATZ, 12.5% PBD + ATZ, and QUE + ATZ for 21 days. Results revealed that ATZ treatments in rats lowered gonadal hormone levels and the semen quality (sperm concentration, motility, count, and viability), damaged testicular morphology and functions, and impaired redox-inflammatory balance as well as cholinergic and purinergic activities. However, treatment with PBD and QUE ameliorated the testicular toxicity induced by ATZ, although the treatment did not improve the rat semen quality. In addition, the ATZ + QUE and QUE groups showed mild to moderate atrophic degenerative changes, with reduced spermatogenic activity. Together, the results are evidence that 21 days of exposure to ATZ impaired testicular function. However, co-administration of atrazine and PBD improves rat gonadal hormones, redox state, inflammatory indices, cholinergic, and purinergic activities, as well as histoarchitecture of the testes.
{"title":"Co-Administration of a Plantain-Based Diet and Quercetin Modulates Atrazine-Induced Testicular Dysfunction in Rats via Testicular Steroidogenesis and Redox-Inflammatory Processes.","authors":"Damilare Emmanuel Rotimi, Olusola Olalekan Elekofehinti, Olarewaju Michael Oluba, Oluyomi Stephen Adeyemi","doi":"10.1002/tox.24431","DOIUrl":"10.1002/tox.24431","url":null,"abstract":"<p><p>Plantain has been reported to enhance testicular function indices, however, the mechanism remains unknown. The present study investigated the action mechanisms of a plantain-based diet in the treatment of rat testicular dysfunction caused by exposure to atrazine (ATZ). The rats were grouped into 10 groups (5 rats each); control group, 50% plantain-based diet (50% PBD), 25% PBD, 12.5% PBD, quercetin (QUE), ATZ only, 50% PBD + ATZ, 25% PBD + ATZ, 12.5% PBD + ATZ, and QUE + ATZ for 21 days. Results revealed that ATZ treatments in rats lowered gonadal hormone levels and the semen quality (sperm concentration, motility, count, and viability), damaged testicular morphology and functions, and impaired redox-inflammatory balance as well as cholinergic and purinergic activities. However, treatment with PBD and QUE ameliorated the testicular toxicity induced by ATZ, although the treatment did not improve the rat semen quality. In addition, the ATZ + QUE and QUE groups showed mild to moderate atrophic degenerative changes, with reduced spermatogenic activity. Together, the results are evidence that 21 days of exposure to ATZ impaired testicular function. However, co-administration of atrazine and PBD improves rat gonadal hormones, redox state, inflammatory indices, cholinergic, and purinergic activities, as well as histoarchitecture of the testes.</p>","PeriodicalId":11756,"journal":{"name":"Environmental Toxicology","volume":" ","pages":"291-305"},"PeriodicalIF":4.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142675244","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study aims to elucidate the role of minichromosome maintenance protein 4 (MCM4) in malignant melanoma (MM) and explore the underlying mechanism. Initially, data from The Cancer Genome Atlas (TCGA) database and the Molecular Signature Database (MSigDB) were used to investigate the biological impact of MCM4 on MM. Further, a prognostic model using Cox regression analysis was developed to predict the overall survival (OS) rate in the MM patients. The effects of MCM4 on the proliferation, migration, and invasion abilities of MM (B16F0 and A375) cells were demonstrated using the CCK-8, colony formation, EDU, wound scratch, and Transwell assays. In subcutaneous tumor models in C57BL/6 mice in vivo, the expression levels of MCM4 in MM cells and tumors were detected using Western blot and immunofluorescence approaches. The bioinformatics analysis indicated that MCM4 was expressed higher in MM tissues than in the normal tissues (p < 0.05). The established OS prediction model could significantly contribute to devising follow-up strategies and treating MM patients. MCM4 knockdown resulted in reduced proliferation, migration, and invasion abilities of MM cells, which were reversed by MCM4 overexpression (p < 0.05). Moreover, MCM4 could activate the phosphatidylinositol 3'-kinase (PI3K)/AKT pathway in MM cells. The PI3K inhibitor (LY294002) could reverse the effects of MCM4 on MM cells. MCM4 could substantially prompt the tumor growth of MM in mice through the PI3K/AKT pathway in vivo. In summary, MCM4 prompted the development and metastasis of MM by activating the PI3K/AKT pathway.
本研究旨在阐明迷你染色体维护蛋白4(MCM4)在恶性黑色素瘤(MM)中的作用并探索其潜在机制。最初,研究人员利用癌症基因组图谱(TCGA)数据库和分子特征数据库(MSigDB)中的数据研究了MCM4对MM的生物学影响。此外,还利用 Cox 回归分析建立了一个预后模型,以预测 MM 患者的总生存率(OS)。利用 CCK-8、集落形成、EDU、伤口划痕和 Transwell 试验证明了 MCM4 对 MM(B16F0 和 A375)细胞增殖、迁移和侵袭能力的影响。在 C57BL/6 小鼠皮下肿瘤模型中,使用 Western 印迹和免疫荧光方法检测了 MM 细胞和肿瘤中 MCM4 的表达水平。生物信息学分析表明,MCM4 在 MM 组织中的表达高于正常组织(p
{"title":"MCM4 Promotes the Progression of Malignant Melanoma by Activating the PI3K/AKT Pathway.","authors":"Xuewei Zhang, Mingming Dong, Guoxing Zheng, Meng Sun, Chuzhao Zhang, Zibin Zhou, Shijie Tang","doi":"10.1002/tox.24433","DOIUrl":"10.1002/tox.24433","url":null,"abstract":"<p><p>This study aims to elucidate the role of minichromosome maintenance protein 4 (MCM4) in malignant melanoma (MM) and explore the underlying mechanism. Initially, data from The Cancer Genome Atlas (TCGA) database and the Molecular Signature Database (MSigDB) were used to investigate the biological impact of MCM4 on MM. Further, a prognostic model using Cox regression analysis was developed to predict the overall survival (OS) rate in the MM patients. The effects of MCM4 on the proliferation, migration, and invasion abilities of MM (B16F0 and A375) cells were demonstrated using the CCK-8, colony formation, EDU, wound scratch, and Transwell assays. In subcutaneous tumor models in C57BL/6 mice in vivo, the expression levels of MCM4 in MM cells and tumors were detected using Western blot and immunofluorescence approaches. The bioinformatics analysis indicated that MCM4 was expressed higher in MM tissues than in the normal tissues (p < 0.05). The established OS prediction model could significantly contribute to devising follow-up strategies and treating MM patients. MCM4 knockdown resulted in reduced proliferation, migration, and invasion abilities of MM cells, which were reversed by MCM4 overexpression (p < 0.05). Moreover, MCM4 could activate the phosphatidylinositol 3'-kinase (PI3K)/AKT pathway in MM cells. The PI3K inhibitor (LY294002) could reverse the effects of MCM4 on MM cells. MCM4 could substantially prompt the tumor growth of MM in mice through the PI3K/AKT pathway in vivo. In summary, MCM4 prompted the development and metastasis of MM by activating the PI3K/AKT pathway.</p>","PeriodicalId":11756,"journal":{"name":"Environmental Toxicology","volume":" ","pages":"306-317"},"PeriodicalIF":4.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142582557","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Colorectal cancer (CRC) is a highly malignant tumor with hypoxia being a crucial feature during its progression. This study utilized multiple independent CRC cohorts for bioinformatics analysis and in vitro experiments to investigate the role of hypoxia-related subgroups in CRC. Machine learning was employed to construct risk features associated with this subgroup and further explore its therapeutic value in CRC. The study identified the GPNMB+ Macrophage (GPNMB+ Macr) subgroup as most relevant to hypoxia. GPNMB+ Macr showed significantly higher infiltration in tumor tissues compared to non-tumor tissues, increasing with CRC stage. High infiltration of GPNMB+ Macr was associated with poor prognosis in terms of overall and recurrence-free survival in CRC patients. GPNMB+ Macrophages exhibit M2-like characteristics and have the ability to promote 5-FU resistance, proliferation, and metastasis of CRC cells. The study developed the Hypoxia-Related Macrophage Risk Score (HMRS), which not only served as an independent prognostic factor for CRC patients but also demonstrated robust prognostic performance compared to 84 previously published prognostic features. Patients with low HMRS were sensitive to fluorouracil, oxaliplatin (FOLFOX), and anti-PD-1 immunotherapy, while those with high HMRS showed resistance. Additionally, HMRS was identified as an independent prognostic factor in other digestive tract tumors (hepatocellular carcinoma, pancreatic cancer, esophageal cancer, and gastric cancer), indicating potential extrapolation to other tumor types. In conclusion, GPNMB+ Macr promotes the malignant progression of CRC, and HMRS serves as a powerful predictive tool for prognosis, chemotherapy, and immunotherapy in CRC patients, aiding in improving the quality of survival.
{"title":"Hypoxia-Associated GPNMB+ Macrophages Promote Malignant Progression of Colorectal Cancer and Its Related Risk Signature Are Powerful Predictive Tool for the Treatment of Colorectal Cancer Patients.","authors":"Junli Zhang, Shangshang Hu, Xinxin Jin, Yiwen Zheng, Lianchen Yu, Junrao Ma, Biao Gu, Fen Wang, Wenjuan Wu","doi":"10.1002/tox.24426","DOIUrl":"10.1002/tox.24426","url":null,"abstract":"<p><p>Colorectal cancer (CRC) is a highly malignant tumor with hypoxia being a crucial feature during its progression. This study utilized multiple independent CRC cohorts for bioinformatics analysis and in vitro experiments to investigate the role of hypoxia-related subgroups in CRC. Machine learning was employed to construct risk features associated with this subgroup and further explore its therapeutic value in CRC. The study identified the GPNMB+ Macrophage (GPNMB+ Macr) subgroup as most relevant to hypoxia. GPNMB+ Macr showed significantly higher infiltration in tumor tissues compared to non-tumor tissues, increasing with CRC stage. High infiltration of GPNMB+ Macr was associated with poor prognosis in terms of overall and recurrence-free survival in CRC patients. GPNMB+ Macrophages exhibit M2-like characteristics and have the ability to promote 5-FU resistance, proliferation, and metastasis of CRC cells. The study developed the Hypoxia-Related Macrophage Risk Score (HMRS), which not only served as an independent prognostic factor for CRC patients but also demonstrated robust prognostic performance compared to 84 previously published prognostic features. Patients with low HMRS were sensitive to fluorouracil, oxaliplatin (FOLFOX), and anti-PD-1 immunotherapy, while those with high HMRS showed resistance. Additionally, HMRS was identified as an independent prognostic factor in other digestive tract tumors (hepatocellular carcinoma, pancreatic cancer, esophageal cancer, and gastric cancer), indicating potential extrapolation to other tumor types. In conclusion, GPNMB+ Macr promotes the malignant progression of CRC, and HMRS serves as a powerful predictive tool for prognosis, chemotherapy, and immunotherapy in CRC patients, aiding in improving the quality of survival.</p>","PeriodicalId":11756,"journal":{"name":"Environmental Toxicology","volume":" ","pages":"204-221"},"PeriodicalIF":4.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142375192","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-02-01Epub Date: 2024-10-29DOI: 10.1002/tox.24432
{"title":"Correction to \"Inflammatory Response and Endothelial Dysfunction in the Hearts of Mice Co-Exposed to SO2, NO2, and PM2.5\".","authors":"","doi":"10.1002/tox.24432","DOIUrl":"10.1002/tox.24432","url":null,"abstract":"","PeriodicalId":11756,"journal":{"name":"Environmental Toxicology","volume":" ","pages":"361"},"PeriodicalIF":4.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142521416","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Human oral squamous cell carcinoma (OSCC) poses a significant health challenge in Asia, with current therapeutic strategies failing to improve the survival rates for OSCC patients sufficiently. To elucidate the effects of Nimbolide on OSCC cell proliferation and apoptosis, we performed a series of experiments, including cell proliferation assays, annexin V/PI assays, and cell cycle analysis. We further investigated nimbolide's role in modulating endoplasmic reticulum (ER) stress, reactive oxygen species (ROS) production, and mitochondrial dysfunction using flow cytometry. Additionally, Western blotting was used to detect apoptosis-related protein expression. Our findings reveal that nimbolide exerts its anti-proliferative effects on OSCC cells by inducing apoptosis. The nimbolide increased intracellular ROS levels and acceleration of cellular calcium accumulation, respectively promoting endoplasmic reticulum stress and cancer cell apoptosis. Furthermore, nimbolide activates the caspase cascade by altering the mitochondrial membrane potential and apoptotic protein expression, thereby inhibiting the viability of tumor cells. Our data show that Nimbolide suppresses tumor growth through the induction of ROS production, ER stress, and mitochondrial dysfunction, resulting in apoptosis in OSCC cells. Overall, our study highlights nimbolide as a potential natural compound for OSCC therapy.
{"title":"Nimbolide Induces Cell Apoptosis via Mediating ER Stress-Regulated Apoptotic Signaling in Human Oral Squamous Cell Carcinoma.","authors":"Bou-Yue Peng, Chia-Yu Wu, Chia-Jung Lee, Tsung-Ming Chang, Ya-Ting Tsao, Ju-Fang Liu","doi":"10.1002/tox.24436","DOIUrl":"10.1002/tox.24436","url":null,"abstract":"<p><p>Human oral squamous cell carcinoma (OSCC) poses a significant health challenge in Asia, with current therapeutic strategies failing to improve the survival rates for OSCC patients sufficiently. To elucidate the effects of Nimbolide on OSCC cell proliferation and apoptosis, we performed a series of experiments, including cell proliferation assays, annexin V/PI assays, and cell cycle analysis. We further investigated nimbolide's role in modulating endoplasmic reticulum (ER) stress, reactive oxygen species (ROS) production, and mitochondrial dysfunction using flow cytometry. Additionally, Western blotting was used to detect apoptosis-related protein expression. Our findings reveal that nimbolide exerts its anti-proliferative effects on OSCC cells by inducing apoptosis. The nimbolide increased intracellular ROS levels and acceleration of cellular calcium accumulation, respectively promoting endoplasmic reticulum stress and cancer cell apoptosis. Furthermore, nimbolide activates the caspase cascade by altering the mitochondrial membrane potential and apoptotic protein expression, thereby inhibiting the viability of tumor cells. Our data show that Nimbolide suppresses tumor growth through the induction of ROS production, ER stress, and mitochondrial dysfunction, resulting in apoptosis in OSCC cells. Overall, our study highlights nimbolide as a potential natural compound for OSCC therapy.</p>","PeriodicalId":11756,"journal":{"name":"Environmental Toxicology","volume":" ","pages":"347-356"},"PeriodicalIF":4.4,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142497363","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Retraction: J. Zhang, S. He, and H. Ying, "Refining Molecular Subtypes and Risk Stratification of Ovarian Cancer Through Multi-Omics Consensus Portfolio and Machine Learning," Environmental Toxicology (EarlyView): https://doi.org/10.1002/tox.24222. The above article, published online on 13 March 2024, in Wiley Online Library (http://onlinelibrary.wiley.com/), has been retracted by agreement between the journal Editor-in-Chief, Paul B. Tchounwou; and Wiley Periodicals LLC. Following an investigation by the publisher, the parties have concluded that this article was accepted solely on the basis of a compromised peer review process. Therefore, the article must be retracted.
{"title":"RETRACTION: Refining Molecular Subtypes and Risk Stratification of Ovarian Cancer Through Multi-Omics Consensus Portfolio and Machine Learning.","authors":"","doi":"10.1002/tox.24479","DOIUrl":"https://doi.org/10.1002/tox.24479","url":null,"abstract":"<p><strong>Retraction: </strong>J. Zhang, S. He, and H. Ying, \"Refining Molecular Subtypes and Risk Stratification of Ovarian Cancer Through Multi-Omics Consensus Portfolio and Machine Learning,\" Environmental Toxicology (EarlyView): https://doi.org/10.1002/tox.24222. The above article, published online on 13 March 2024, in Wiley Online Library (http://onlinelibrary.wiley.com/), has been retracted by agreement between the journal Editor-in-Chief, Paul B. Tchounwou; and Wiley Periodicals LLC. Following an investigation by the publisher, the parties have concluded that this article was accepted solely on the basis of a compromised peer review process. Therefore, the article must be retracted.</p>","PeriodicalId":11756,"journal":{"name":"Environmental Toxicology","volume":" ","pages":""},"PeriodicalIF":4.4,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143002376","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Retraction: X. Xudong, L. Heng, C. Benchao, C. Wenjie, L. Bao, and L. Gaofeng, "Integrated RNA Expression and Alternative Polyadenylation Analysis Identified CPSF1-CCDC137 Oncogenic Axis in Lung Adenocarcinoma," Environmental Toxicology 39, no. 4 (2024): 2405-2416, https://doi.org/10.1002/tox.24105. The above article, published online on 4 January 2024, in Wiley Online Library (http://onlinelibrary.wiley.com/), has been retracted by agreement between the journal Editor-in-Chief, Paul B. Tchounwou; and Wiley Periodicals LLC. Following an investigation by the publisher, the parties have concluded that this article was accepted solely on the basis of a compromised peer review process. Therefore, the article must be retracted.
{"title":"RETRACTION: Integrated RNA Expression and Alternative Polyadenylation Analysis Identified CPSF1-CCDC137 Oncogenic Axis in Lung Adenocarcinoma.","authors":"","doi":"10.1002/tox.24478","DOIUrl":"https://doi.org/10.1002/tox.24478","url":null,"abstract":"<p><strong>Retraction: </strong>X. Xudong, L. Heng, C. Benchao, C. Wenjie, L. Bao, and L. Gaofeng, \"Integrated RNA Expression and Alternative Polyadenylation Analysis Identified CPSF1-CCDC137 Oncogenic Axis in Lung Adenocarcinoma,\" Environmental Toxicology 39, no. 4 (2024): 2405-2416, https://doi.org/10.1002/tox.24105. The above article, published online on 4 January 2024, in Wiley Online Library (http://onlinelibrary.wiley.com/), has been retracted by agreement between the journal Editor-in-Chief, Paul B. Tchounwou; and Wiley Periodicals LLC. Following an investigation by the publisher, the parties have concluded that this article was accepted solely on the basis of a compromised peer review process. Therefore, the article must be retracted.</p>","PeriodicalId":11756,"journal":{"name":"Environmental Toxicology","volume":" ","pages":""},"PeriodicalIF":4.4,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143002426","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chen-Si Li, Jie Liu, Qiangqiang Zhang, Xue-Rui Tang, Yuan-Yuan Liu, Aoneng Cao, Haifang Wang
The wide range of applications and the enormous production of nanomaterials have raised the possibility that humans may simultaneously contact with various nanomaterials through multiple routes. Although numerous toxicity studies have been conducted on the toxicity of nanomaterials, knowledge of the combined toxicity of nanomaterials remains limited. Herein, the combined toxic effects of the two types of the most widely used nanomaterials, silver and silica, were studied on HeLa cells. In addition, considering there may have possible interplay between nanoparticles of different sizes, two different-sized silica nanoparticles (SNPs) were used. The results indicate that compared with individual exposure, the combined exposure to 35 nm silver nanoparticles (Ag35) and 40 nm or 120 nm SNPs (SNP40 or SNP120) at individual non-toxic concentrations causes more severe cytotoxicity, manifested by the ROS overgeneration, decreased mitochondrial membrane potential and ATP level, and increased apoptosis/necrosis. The internalized Ag35 and its dissolved Ag ions that are delivered into cells by adsorbing on SNPs are identified as the primary contributors to the combined toxicity. Although the cytotoxicity of the mixed Ag35 and SNP40 is comparable to that of the mixed Ag35 and SNP120, there are noticeable differences in their intracellular contents and their subcellular locations due to size effects. This study provides in-depth insights into the combined toxicity of inorganic nanoparticles and highlights the importance of the size effect of nanoparticles in their nanotoxicity assessment.
{"title":"Combined Effect of Nanoparticles of Silver and Silica to HeLa Cells: Synergistic Internalization and Toxicity.","authors":"Chen-Si Li, Jie Liu, Qiangqiang Zhang, Xue-Rui Tang, Yuan-Yuan Liu, Aoneng Cao, Haifang Wang","doi":"10.1002/tox.24480","DOIUrl":"https://doi.org/10.1002/tox.24480","url":null,"abstract":"<p><p>The wide range of applications and the enormous production of nanomaterials have raised the possibility that humans may simultaneously contact with various nanomaterials through multiple routes. Although numerous toxicity studies have been conducted on the toxicity of nanomaterials, knowledge of the combined toxicity of nanomaterials remains limited. Herein, the combined toxic effects of the two types of the most widely used nanomaterials, silver and silica, were studied on HeLa cells. In addition, considering there may have possible interplay between nanoparticles of different sizes, two different-sized silica nanoparticles (SNPs) were used. The results indicate that compared with individual exposure, the combined exposure to 35 nm silver nanoparticles (Ag35) and 40 nm or 120 nm SNPs (SNP40 or SNP120) at individual non-toxic concentrations causes more severe cytotoxicity, manifested by the ROS overgeneration, decreased mitochondrial membrane potential and ATP level, and increased apoptosis/necrosis. The internalized Ag35 and its dissolved Ag ions that are delivered into cells by adsorbing on SNPs are identified as the primary contributors to the combined toxicity. Although the cytotoxicity of the mixed Ag35 and SNP40 is comparable to that of the mixed Ag35 and SNP120, there are noticeable differences in their intracellular contents and their subcellular locations due to size effects. This study provides in-depth insights into the combined toxicity of inorganic nanoparticles and highlights the importance of the size effect of nanoparticles in their nanotoxicity assessment.</p>","PeriodicalId":11756,"journal":{"name":"Environmental Toxicology","volume":" ","pages":""},"PeriodicalIF":4.4,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143002259","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}