Adap-BDCM:用于 CNV 数据集分类任务的自适应双线性动态级联模型。

IF 3.9 2区 生物学 Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY Interdisciplinary Sciences: Computational Life Sciences Pub Date : 2024-12-01 Epub Date: 2024-05-17 DOI:10.1007/s12539-024-00635-w
Liancheng Jiang, Liye Jia, Yizhen Wang, Yongfei Wu, Junhong Yue
{"title":"Adap-BDCM:用于 CNV 数据集分类任务的自适应双线性动态级联模型。","authors":"Liancheng Jiang, Liye Jia, Yizhen Wang, Yongfei Wu, Junhong Yue","doi":"10.1007/s12539-024-00635-w","DOIUrl":null,"url":null,"abstract":"<p><p>Copy number variation (CNV) is an essential genetic driving factor of cancer formation and progression, making intelligent classification based on CNV feasible. However, there are a few challenges in the current machine learning and deep learning methods, such as the design of base classifier combination schemes in ensemble methods and the selection of layers of neural networks, which often result in low accuracy. Therefore, an adaptive bilinear dynamic cascade model (Adap-BDCM) is developed to further enhance the accuracy and applicability of these methods for intelligent classification on CNV datasets. In this model, a feature selection module is introduced to mitigate the interference of redundant information, and a bilinear model based on the gated attention mechanism is proposed to extract more beneficial deep fusion features. Furthermore, an adaptive base classifier selection scheme is designed to overcome the difficulty of manually designing base classifier combinations and enhance the applicability of the model. Lastly, a novel feature fusion scheme with an attribute recall submodule is constructed, effectively avoiding getting stuck in local solutions and missing some valuable information. Numerous experiments have demonstrated that our Adap-BDCM model exhibits optimal performance in cancer classification, stage prediction, and recurrence on CNV datasets. This study can assist physicians in making diagnoses faster and better.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":"1019-1037"},"PeriodicalIF":3.9000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adap-BDCM: Adaptive Bilinear Dynamic Cascade Model for Classification Tasks on CNV Datasets.\",\"authors\":\"Liancheng Jiang, Liye Jia, Yizhen Wang, Yongfei Wu, Junhong Yue\",\"doi\":\"10.1007/s12539-024-00635-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Copy number variation (CNV) is an essential genetic driving factor of cancer formation and progression, making intelligent classification based on CNV feasible. However, there are a few challenges in the current machine learning and deep learning methods, such as the design of base classifier combination schemes in ensemble methods and the selection of layers of neural networks, which often result in low accuracy. Therefore, an adaptive bilinear dynamic cascade model (Adap-BDCM) is developed to further enhance the accuracy and applicability of these methods for intelligent classification on CNV datasets. In this model, a feature selection module is introduced to mitigate the interference of redundant information, and a bilinear model based on the gated attention mechanism is proposed to extract more beneficial deep fusion features. Furthermore, an adaptive base classifier selection scheme is designed to overcome the difficulty of manually designing base classifier combinations and enhance the applicability of the model. Lastly, a novel feature fusion scheme with an attribute recall submodule is constructed, effectively avoiding getting stuck in local solutions and missing some valuable information. Numerous experiments have demonstrated that our Adap-BDCM model exhibits optimal performance in cancer classification, stage prediction, and recurrence on CNV datasets. This study can assist physicians in making diagnoses faster and better.</p>\",\"PeriodicalId\":13670,\"journal\":{\"name\":\"Interdisciplinary Sciences: Computational Life Sciences\",\"volume\":\" \",\"pages\":\"1019-1037\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Interdisciplinary Sciences: Computational Life Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s12539-024-00635-w\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interdisciplinary Sciences: Computational Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12539-024-00635-w","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/17 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

拷贝数变异(CNV)是癌症形成和发展的重要遗传驱动因素,因此基于 CNV 的智能分类是可行的。然而,目前的机器学习和深度学习方法存在一些挑战,如集合方法中基础分类器组合方案的设计和神经网络层的选择,这往往导致准确率较低。因此,我们开发了一种自适应双线性动态级联模型(Adap-BDCM),以进一步提高这些方法在 CNV 数据集智能分类中的准确性和适用性。在该模型中,引入了一个特征选择模块来减少冗余信息的干扰,并提出了一个基于门控注意机制的双线性模型来提取更多有益的深度融合特征。此外,还设计了一种自适应基础分类器选择方案,以克服人工设计基础分类器组合的困难,增强模型的适用性。最后,构建了一种带有属性召回子模块的新型特征融合方案,有效避免了陷入局部求解而遗漏一些有价值的信息。大量实验证明,我们的 Adap-BDCM 模型在 CNV 数据集的癌症分类、分期预测和复发方面表现出最佳性能。这项研究可以帮助医生更快更好地做出诊断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Adap-BDCM: Adaptive Bilinear Dynamic Cascade Model for Classification Tasks on CNV Datasets.

Copy number variation (CNV) is an essential genetic driving factor of cancer formation and progression, making intelligent classification based on CNV feasible. However, there are a few challenges in the current machine learning and deep learning methods, such as the design of base classifier combination schemes in ensemble methods and the selection of layers of neural networks, which often result in low accuracy. Therefore, an adaptive bilinear dynamic cascade model (Adap-BDCM) is developed to further enhance the accuracy and applicability of these methods for intelligent classification on CNV datasets. In this model, a feature selection module is introduced to mitigate the interference of redundant information, and a bilinear model based on the gated attention mechanism is proposed to extract more beneficial deep fusion features. Furthermore, an adaptive base classifier selection scheme is designed to overcome the difficulty of manually designing base classifier combinations and enhance the applicability of the model. Lastly, a novel feature fusion scheme with an attribute recall submodule is constructed, effectively avoiding getting stuck in local solutions and missing some valuable information. Numerous experiments have demonstrated that our Adap-BDCM model exhibits optimal performance in cancer classification, stage prediction, and recurrence on CNV datasets. This study can assist physicians in making diagnoses faster and better.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Interdisciplinary Sciences: Computational Life Sciences
Interdisciplinary Sciences: Computational Life Sciences MATHEMATICAL & COMPUTATIONAL BIOLOGY-
CiteScore
8.60
自引率
4.20%
发文量
55
期刊介绍: Interdisciplinary Sciences--Computational Life Sciences aims to cover the most recent and outstanding developments in interdisciplinary areas of sciences, especially focusing on computational life sciences, an area that is enjoying rapid development at the forefront of scientific research and technology. The journal publishes original papers of significant general interest covering recent research and developments. Articles will be published rapidly by taking full advantage of internet technology for online submission and peer-reviewing of manuscripts, and then by publishing OnlineFirstTM through SpringerLink even before the issue is built or sent to the printer. The editorial board consists of many leading scientists with international reputation, among others, Luc Montagnier (UNESCO, France), Dennis Salahub (University of Calgary, Canada), Weitao Yang (Duke University, USA). Prof. Dongqing Wei at the Shanghai Jiatong University is appointed as the editor-in-chief; he made important contributions in bioinformatics and computational physics and is best known for his ground-breaking works on the theory of ferroelectric liquids. With the help from a team of associate editors and the editorial board, an international journal with sound reputation shall be created.
期刊最新文献
Adap-BDCM: Adaptive Bilinear Dynamic Cascade Model for Classification Tasks on CNV Datasets. CVGAE: A Self-Supervised Generative Method for Gene Regulatory Network Inference Using Single-Cell RNA Sequencing Data. Unraveling Brain Synchronisation Dynamics by Explainable Neural Networks using EEG Signals: Application to Dyslexia Diagnosis. Ensemble Machine Learning and Predicted Properties Promote Antimicrobial Peptide Identification. Viral Rebound After Antiviral Treatment: A Mathematical Modeling Study of the Role of Antiviral Mechanism of Action.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1