Eleanor J McKay, Ineke Luijten, Sophie Broadway-Stringer, Adrian Thomson, Xiong Weng, Katya Gehmlich, Gillian A Gray, Robert K Semple
{"title":"雌性 Alms1 基因缺陷小鼠会出现成人阿尔斯特罗姆综合征心肌病的超声心动图特征,但不会出现婴儿阿尔斯特罗姆综合征心肌病的超声心动图特征。","authors":"Eleanor J McKay, Ineke Luijten, Sophie Broadway-Stringer, Adrian Thomson, Xiong Weng, Katya Gehmlich, Gillian A Gray, Robert K Semple","doi":"10.1242/dmm.050561","DOIUrl":null,"url":null,"abstract":"<p><p>Alström syndrome (AS), a multisystem disorder caused by biallelic ALMS1 mutations, features major early morbidity and mortality due to cardiac complications. The latter are biphasic, including infantile dilated cardiomyopathy and distinct adult-onset cardiomyopathy, and poorly understood. We assessed cardiac function of Alms1 knockout (KO) mice by echocardiography. Cardiac function was unaltered in Alms1 global KO mice of both sexes at postnatal day 15 (P15) and 8 weeks. At 23 weeks, female - but not male - KO mice showed increased left atrial area and decreased isovolumic relaxation time, consistent with early restrictive cardiomyopathy, as well as reduced ejection fraction. No histological or transcriptional changes were seen in myocardium of 23-week-old female Alms1 global KO mice. Female mice with Pdgfra-Cre-driven Alms1 deletion in cardiac fibroblasts and in a small proportion of cardiomyocytes did not recapitulate the phenotype of global KO at 23 weeks. In conclusion, only female Alms1-deficient adult mice show echocardiographic evidence of cardiac dysfunction, consistent with the cardiomyopathy of AS. The explanation for sexual dimorphism remains unclear but might involve metabolic or endocrine differences between sexes.</p>","PeriodicalId":11144,"journal":{"name":"Disease Models & Mechanisms","volume":" ","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11225586/pdf/","citationCount":"0","resultStr":"{\"title\":\"Female Alms1-deficient mice develop echocardiographic features of adult but not infantile Alström syndrome cardiomyopathy.\",\"authors\":\"Eleanor J McKay, Ineke Luijten, Sophie Broadway-Stringer, Adrian Thomson, Xiong Weng, Katya Gehmlich, Gillian A Gray, Robert K Semple\",\"doi\":\"10.1242/dmm.050561\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Alström syndrome (AS), a multisystem disorder caused by biallelic ALMS1 mutations, features major early morbidity and mortality due to cardiac complications. The latter are biphasic, including infantile dilated cardiomyopathy and distinct adult-onset cardiomyopathy, and poorly understood. We assessed cardiac function of Alms1 knockout (KO) mice by echocardiography. Cardiac function was unaltered in Alms1 global KO mice of both sexes at postnatal day 15 (P15) and 8 weeks. At 23 weeks, female - but not male - KO mice showed increased left atrial area and decreased isovolumic relaxation time, consistent with early restrictive cardiomyopathy, as well as reduced ejection fraction. No histological or transcriptional changes were seen in myocardium of 23-week-old female Alms1 global KO mice. Female mice with Pdgfra-Cre-driven Alms1 deletion in cardiac fibroblasts and in a small proportion of cardiomyocytes did not recapitulate the phenotype of global KO at 23 weeks. In conclusion, only female Alms1-deficient adult mice show echocardiographic evidence of cardiac dysfunction, consistent with the cardiomyopathy of AS. The explanation for sexual dimorphism remains unclear but might involve metabolic or endocrine differences between sexes.</p>\",\"PeriodicalId\":11144,\"journal\":{\"name\":\"Disease Models & Mechanisms\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11225586/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Disease Models & Mechanisms\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1242/dmm.050561\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/6/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Disease Models & Mechanisms","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1242/dmm.050561","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/28 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Female Alms1-deficient mice develop echocardiographic features of adult but not infantile Alström syndrome cardiomyopathy.
Alström syndrome (AS), a multisystem disorder caused by biallelic ALMS1 mutations, features major early morbidity and mortality due to cardiac complications. The latter are biphasic, including infantile dilated cardiomyopathy and distinct adult-onset cardiomyopathy, and poorly understood. We assessed cardiac function of Alms1 knockout (KO) mice by echocardiography. Cardiac function was unaltered in Alms1 global KO mice of both sexes at postnatal day 15 (P15) and 8 weeks. At 23 weeks, female - but not male - KO mice showed increased left atrial area and decreased isovolumic relaxation time, consistent with early restrictive cardiomyopathy, as well as reduced ejection fraction. No histological or transcriptional changes were seen in myocardium of 23-week-old female Alms1 global KO mice. Female mice with Pdgfra-Cre-driven Alms1 deletion in cardiac fibroblasts and in a small proportion of cardiomyocytes did not recapitulate the phenotype of global KO at 23 weeks. In conclusion, only female Alms1-deficient adult mice show echocardiographic evidence of cardiac dysfunction, consistent with the cardiomyopathy of AS. The explanation for sexual dimorphism remains unclear but might involve metabolic or endocrine differences between sexes.
期刊介绍:
Disease Models & Mechanisms (DMM) is an online Open Access journal focusing on the use of model systems to better understand, diagnose and treat human disease.