{"title":"在塞拉利昂的蝙蝠中发现疟原虫(Vinckeia)和环状疟原虫的新成员--核序列和完整线粒体基因组分析。","authors":"","doi":"10.1016/j.ijpara.2024.05.002","DOIUrl":null,"url":null,"abstract":"<div><p>Malaria remains the most important arthropod-borne infectious disease globally. The causative agent, <em>Plasmodium,</em> is a unicellular eukaryote that develops inside red blood cells. Identifying new <em>Plasmodium</em> parasite species that infect mammalian hosts can shed light on the complex evolution and diversity of malaria parasites. Bats feature a high diversity of microorganisms including seven separate genera of malarial parasites. Three species of <em>Plasmodium</em> have been reported so far, for which scarce reports exist. Here we present data from an investigation of <em>Plasmodium</em> infections in bats in the western Guinean lowland forest in Sierra Leone. We discovered a new <em>Plasmodium</em> parasite in the horseshoe bat <em>Rhinolophus landeri</em>. <em>Plasmodium cyclopsi</em> infections in a member of leaf-nosed bats, <em>Doryrhina cyclops,</em> exhibited a high prevalence of 100%. Phylogenetic analysis of complete mitochondrial genomes and nine nuclear markers recovered a close relationship between <em>P. cyclopsi</em> and the new <em>Plasmodium</em> parasite with the rodent species <em>Plasmodium berghei</em>, a widely used <em>in vivo</em> model to study malaria in humans. The data suggests that the “rodent/bat” <em>Plasmodium</em> (<em>Vinckeia)</em> clade represents a diverse group of malarial parasites that would likely expand with a systematic sampling of small mammals in tropical Africa. Identifying the bat <em>Plasmodium</em> repertoire is central to our understanding of the evolution of <em>Plasmodium</em> parasites in mammals.</p></div>","PeriodicalId":13725,"journal":{"name":"International journal for parasitology","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0020751924001085/pdfft?md5=eb2f710268bdc9cfda46e390f40e3f45&pid=1-s2.0-S0020751924001085-main.pdf","citationCount":"0","resultStr":"{\"title\":\"New member of Plasmodium (Vinckeia) and Plasmodium cyclopsi discovered in bats in Sierra Leone – nuclear sequence and complete mitochondrial genome analyses\",\"authors\":\"\",\"doi\":\"10.1016/j.ijpara.2024.05.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Malaria remains the most important arthropod-borne infectious disease globally. The causative agent, <em>Plasmodium,</em> is a unicellular eukaryote that develops inside red blood cells. Identifying new <em>Plasmodium</em> parasite species that infect mammalian hosts can shed light on the complex evolution and diversity of malaria parasites. Bats feature a high diversity of microorganisms including seven separate genera of malarial parasites. Three species of <em>Plasmodium</em> have been reported so far, for which scarce reports exist. Here we present data from an investigation of <em>Plasmodium</em> infections in bats in the western Guinean lowland forest in Sierra Leone. We discovered a new <em>Plasmodium</em> parasite in the horseshoe bat <em>Rhinolophus landeri</em>. <em>Plasmodium cyclopsi</em> infections in a member of leaf-nosed bats, <em>Doryrhina cyclops,</em> exhibited a high prevalence of 100%. Phylogenetic analysis of complete mitochondrial genomes and nine nuclear markers recovered a close relationship between <em>P. cyclopsi</em> and the new <em>Plasmodium</em> parasite with the rodent species <em>Plasmodium berghei</em>, a widely used <em>in vivo</em> model to study malaria in humans. The data suggests that the “rodent/bat” <em>Plasmodium</em> (<em>Vinckeia)</em> clade represents a diverse group of malarial parasites that would likely expand with a systematic sampling of small mammals in tropical Africa. Identifying the bat <em>Plasmodium</em> repertoire is central to our understanding of the evolution of <em>Plasmodium</em> parasites in mammals.</p></div>\",\"PeriodicalId\":13725,\"journal\":{\"name\":\"International journal for parasitology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0020751924001085/pdfft?md5=eb2f710268bdc9cfda46e390f40e3f45&pid=1-s2.0-S0020751924001085-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal for parasitology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0020751924001085\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PARASITOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal for parasitology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020751924001085","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PARASITOLOGY","Score":null,"Total":0}
New member of Plasmodium (Vinckeia) and Plasmodium cyclopsi discovered in bats in Sierra Leone – nuclear sequence and complete mitochondrial genome analyses
Malaria remains the most important arthropod-borne infectious disease globally. The causative agent, Plasmodium, is a unicellular eukaryote that develops inside red blood cells. Identifying new Plasmodium parasite species that infect mammalian hosts can shed light on the complex evolution and diversity of malaria parasites. Bats feature a high diversity of microorganisms including seven separate genera of malarial parasites. Three species of Plasmodium have been reported so far, for which scarce reports exist. Here we present data from an investigation of Plasmodium infections in bats in the western Guinean lowland forest in Sierra Leone. We discovered a new Plasmodium parasite in the horseshoe bat Rhinolophus landeri. Plasmodium cyclopsi infections in a member of leaf-nosed bats, Doryrhina cyclops, exhibited a high prevalence of 100%. Phylogenetic analysis of complete mitochondrial genomes and nine nuclear markers recovered a close relationship between P. cyclopsi and the new Plasmodium parasite with the rodent species Plasmodium berghei, a widely used in vivo model to study malaria in humans. The data suggests that the “rodent/bat” Plasmodium (Vinckeia) clade represents a diverse group of malarial parasites that would likely expand with a systematic sampling of small mammals in tropical Africa. Identifying the bat Plasmodium repertoire is central to our understanding of the evolution of Plasmodium parasites in mammals.
期刊介绍:
International Journal for Parasitology offers authors the option to sponsor nonsubscriber access to their articles on Elsevier electronic publishing platforms. For more information please view our Sponsored Articles page. The International Journal for Parasitology publishes the results of original research in all aspects of basic and applied parasitology, including all the fields covered by its Specialist Editors, and ranging from parasites and host-parasite relationships of intrinsic biological interest to those of social and economic importance in human and veterinary medicine and agriculture.