Kamaldeen Olalekan Sanusi , Murtala Bello Abubakar , Kasimu Ghandi Ibrahim , Mustapha Umar Imam
{"title":"母体缺锌对黑腹果蝇后代代谢结果的跨代影响","authors":"Kamaldeen Olalekan Sanusi , Murtala Bello Abubakar , Kasimu Ghandi Ibrahim , Mustapha Umar Imam","doi":"10.1016/j.jnutbio.2024.109669","DOIUrl":null,"url":null,"abstract":"<div><p>Maternal zinc deficiency significantly influences fetal development and long-term health outcomes, yet its transgenerational effects remain poorly understood. This study aims to investigate the transgenerational effects of maternal zinc deficiency on metabolic outcomes in <em>Drosophila melanogaster</em>. Zinc deficiency was induced in Drosophila by incorporating TPEN (N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine) into their diet. Offspring (F1 to F3) were maintained on a standard diet for subsequent analyses. Various metabolic markers, including glucose, trehalose, glycogen, and triglyceride levels, were assessed, and gene expression analyses were conducted to examine the molecular responses across generations. Significant reductions in locomotor performance in female F1 flies and increased body weight in the F2 generation were observed. Maternal zinc deficiency exhibited gender- and generation-specific impacts on metabolic markers. Notably, an adaptive response in the F3 generation included increased catalase activity and total antioxidant capacity, along with decreased malondialdehyde levels. Gene expression analyses revealed upregulation of <em>DILP2</em> mRNA across generations and significant variations in <em>PEPCK, SOD1, CAT, EGR</em>, and <em>UPD2</em> mRNA levels, demonstrating intricate responses to maternal zinc deficiency. This study provides a holistic understanding of the consequences of maternal zinc deficiency, emphasizing the complex interplay between zinc status and metabolic outcomes across generations in Drosophila. These findings lay the foundation for future research elucidating the underlying molecular mechanisms, with potential implications for humans. The insights gained contribute to informing targeted interventions aimed at optimizing offspring health in the context of maternal zinc deficiency.</p></div>","PeriodicalId":16618,"journal":{"name":"Journal of Nutritional Biochemistry","volume":"130 ","pages":"Article 109669"},"PeriodicalIF":4.8000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transgenerational impact of maternal zinc deficiency on offspring metabolic outcomes in Drosophila melanogaster\",\"authors\":\"Kamaldeen Olalekan Sanusi , Murtala Bello Abubakar , Kasimu Ghandi Ibrahim , Mustapha Umar Imam\",\"doi\":\"10.1016/j.jnutbio.2024.109669\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Maternal zinc deficiency significantly influences fetal development and long-term health outcomes, yet its transgenerational effects remain poorly understood. This study aims to investigate the transgenerational effects of maternal zinc deficiency on metabolic outcomes in <em>Drosophila melanogaster</em>. Zinc deficiency was induced in Drosophila by incorporating TPEN (N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine) into their diet. Offspring (F1 to F3) were maintained on a standard diet for subsequent analyses. Various metabolic markers, including glucose, trehalose, glycogen, and triglyceride levels, were assessed, and gene expression analyses were conducted to examine the molecular responses across generations. Significant reductions in locomotor performance in female F1 flies and increased body weight in the F2 generation were observed. Maternal zinc deficiency exhibited gender- and generation-specific impacts on metabolic markers. Notably, an adaptive response in the F3 generation included increased catalase activity and total antioxidant capacity, along with decreased malondialdehyde levels. Gene expression analyses revealed upregulation of <em>DILP2</em> mRNA across generations and significant variations in <em>PEPCK, SOD1, CAT, EGR</em>, and <em>UPD2</em> mRNA levels, demonstrating intricate responses to maternal zinc deficiency. This study provides a holistic understanding of the consequences of maternal zinc deficiency, emphasizing the complex interplay between zinc status and metabolic outcomes across generations in Drosophila. These findings lay the foundation for future research elucidating the underlying molecular mechanisms, with potential implications for humans. The insights gained contribute to informing targeted interventions aimed at optimizing offspring health in the context of maternal zinc deficiency.</p></div>\",\"PeriodicalId\":16618,\"journal\":{\"name\":\"Journal of Nutritional Biochemistry\",\"volume\":\"130 \",\"pages\":\"Article 109669\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nutritional Biochemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0955286324001025\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nutritional Biochemistry","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955286324001025","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Transgenerational impact of maternal zinc deficiency on offspring metabolic outcomes in Drosophila melanogaster
Maternal zinc deficiency significantly influences fetal development and long-term health outcomes, yet its transgenerational effects remain poorly understood. This study aims to investigate the transgenerational effects of maternal zinc deficiency on metabolic outcomes in Drosophila melanogaster. Zinc deficiency was induced in Drosophila by incorporating TPEN (N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine) into their diet. Offspring (F1 to F3) were maintained on a standard diet for subsequent analyses. Various metabolic markers, including glucose, trehalose, glycogen, and triglyceride levels, were assessed, and gene expression analyses were conducted to examine the molecular responses across generations. Significant reductions in locomotor performance in female F1 flies and increased body weight in the F2 generation were observed. Maternal zinc deficiency exhibited gender- and generation-specific impacts on metabolic markers. Notably, an adaptive response in the F3 generation included increased catalase activity and total antioxidant capacity, along with decreased malondialdehyde levels. Gene expression analyses revealed upregulation of DILP2 mRNA across generations and significant variations in PEPCK, SOD1, CAT, EGR, and UPD2 mRNA levels, demonstrating intricate responses to maternal zinc deficiency. This study provides a holistic understanding of the consequences of maternal zinc deficiency, emphasizing the complex interplay between zinc status and metabolic outcomes across generations in Drosophila. These findings lay the foundation for future research elucidating the underlying molecular mechanisms, with potential implications for humans. The insights gained contribute to informing targeted interventions aimed at optimizing offspring health in the context of maternal zinc deficiency.
期刊介绍:
Devoted to advancements in nutritional sciences, The Journal of Nutritional Biochemistry presents experimental nutrition research as it relates to: biochemistry, molecular biology, toxicology, or physiology.
Rigorous reviews by an international editorial board of distinguished scientists ensure publication of the most current and key research being conducted in nutrition at the cellular, animal and human level. In addition to its monthly features of critical reviews and research articles, The Journal of Nutritional Biochemistry also periodically publishes emerging issues, experimental methods, and other types of articles.