Linrong Shi , Mingzhi Zhu , Ruimin Long , Shibin Wang , Pei Wang , Yuangang Liu
{"title":"基于普鲁士蓝纳米粒子的 pH 响应式自组装,用于增强肿瘤的光热和化疗。","authors":"Linrong Shi , Mingzhi Zhu , Ruimin Long , Shibin Wang , Pei Wang , Yuangang Liu","doi":"10.1016/j.jphotobiol.2024.112938","DOIUrl":null,"url":null,"abstract":"<div><p>In recent years, there has been growing interest in size-transformable nanoplatforms that exhibit active responses to acidic microenvironments, presenting promising prospects in the field of nanomedicine for tumor therapy. However, the design and fabrication of such size-adjustable nanotherapeutics pose significant challenges compared to size-fixed nanocomposites, primarily due to their distinct pH-responsive requirements. In this study, we developed pH-activated-aggregating nanosystems to integrate chemotherapy and photothermal therapy by creating size-transformable nanoparticles based on Prussian blue nanoparticles (PB NPs) anchored with acid-responsive polyoxometalates (POMs) quantum dots <em>via</em> electrostatic interactions (PPP NPs). Subsequently, we utilized doxorubicin (DOX) as a representative drug to formulate PPPD NPs. Notably, PPPD NPs exhibited a significant response to acidic conditions, resulting in changes in surface charge and rapid aggregation of PPP NPs. Furthermore, the aggregated PPP NPs demonstrated excellent photothermal properties under near-infrared laser irradiation. Importantly, PPPD NPs prolonged their retention time in tumor cells <em>via</em> a size-transformation approach. <em>In vitro</em> cellular assays revealed that the anticancer efficacy of PPPD NPs was significantly enhanced. The IC50 values for the PPPD NPs groupand the PPPD NPs + NIR group were 50.11 μg/mL and 30.9 μg/mL. Overall, this study introduces a novel strategy for cancer therapy by developing size-aggregating nano-drugs with stimuli-responsive properties, holding promise for improved therapeutic outcomes in future combination approaches involving photothermal therapy and chemotherapy.</p></div>","PeriodicalId":16772,"journal":{"name":"Journal of photochemistry and photobiology. B, Biology","volume":"256 ","pages":"Article 112938"},"PeriodicalIF":3.9000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prussian blue nanoparticle-based pH-responsive self-assembly for enhanced photothermal and chemotherapy of tumors\",\"authors\":\"Linrong Shi , Mingzhi Zhu , Ruimin Long , Shibin Wang , Pei Wang , Yuangang Liu\",\"doi\":\"10.1016/j.jphotobiol.2024.112938\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In recent years, there has been growing interest in size-transformable nanoplatforms that exhibit active responses to acidic microenvironments, presenting promising prospects in the field of nanomedicine for tumor therapy. However, the design and fabrication of such size-adjustable nanotherapeutics pose significant challenges compared to size-fixed nanocomposites, primarily due to their distinct pH-responsive requirements. In this study, we developed pH-activated-aggregating nanosystems to integrate chemotherapy and photothermal therapy by creating size-transformable nanoparticles based on Prussian blue nanoparticles (PB NPs) anchored with acid-responsive polyoxometalates (POMs) quantum dots <em>via</em> electrostatic interactions (PPP NPs). Subsequently, we utilized doxorubicin (DOX) as a representative drug to formulate PPPD NPs. Notably, PPPD NPs exhibited a significant response to acidic conditions, resulting in changes in surface charge and rapid aggregation of PPP NPs. Furthermore, the aggregated PPP NPs demonstrated excellent photothermal properties under near-infrared laser irradiation. Importantly, PPPD NPs prolonged their retention time in tumor cells <em>via</em> a size-transformation approach. <em>In vitro</em> cellular assays revealed that the anticancer efficacy of PPPD NPs was significantly enhanced. The IC50 values for the PPPD NPs groupand the PPPD NPs + NIR group were 50.11 μg/mL and 30.9 μg/mL. Overall, this study introduces a novel strategy for cancer therapy by developing size-aggregating nano-drugs with stimuli-responsive properties, holding promise for improved therapeutic outcomes in future combination approaches involving photothermal therapy and chemotherapy.</p></div>\",\"PeriodicalId\":16772,\"journal\":{\"name\":\"Journal of photochemistry and photobiology. B, Biology\",\"volume\":\"256 \",\"pages\":\"Article 112938\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of photochemistry and photobiology. B, Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1011134424000988\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of photochemistry and photobiology. B, Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1011134424000988","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Prussian blue nanoparticle-based pH-responsive self-assembly for enhanced photothermal and chemotherapy of tumors
In recent years, there has been growing interest in size-transformable nanoplatforms that exhibit active responses to acidic microenvironments, presenting promising prospects in the field of nanomedicine for tumor therapy. However, the design and fabrication of such size-adjustable nanotherapeutics pose significant challenges compared to size-fixed nanocomposites, primarily due to their distinct pH-responsive requirements. In this study, we developed pH-activated-aggregating nanosystems to integrate chemotherapy and photothermal therapy by creating size-transformable nanoparticles based on Prussian blue nanoparticles (PB NPs) anchored with acid-responsive polyoxometalates (POMs) quantum dots via electrostatic interactions (PPP NPs). Subsequently, we utilized doxorubicin (DOX) as a representative drug to formulate PPPD NPs. Notably, PPPD NPs exhibited a significant response to acidic conditions, resulting in changes in surface charge and rapid aggregation of PPP NPs. Furthermore, the aggregated PPP NPs demonstrated excellent photothermal properties under near-infrared laser irradiation. Importantly, PPPD NPs prolonged their retention time in tumor cells via a size-transformation approach. In vitro cellular assays revealed that the anticancer efficacy of PPPD NPs was significantly enhanced. The IC50 values for the PPPD NPs groupand the PPPD NPs + NIR group were 50.11 μg/mL and 30.9 μg/mL. Overall, this study introduces a novel strategy for cancer therapy by developing size-aggregating nano-drugs with stimuli-responsive properties, holding promise for improved therapeutic outcomes in future combination approaches involving photothermal therapy and chemotherapy.
期刊介绍:
The Journal of Photochemistry and Photobiology B: Biology provides a forum for the publication of papers relating to the various aspects of photobiology, as well as a means for communication in this multidisciplinary field.
The scope includes:
- Bioluminescence
- Chronobiology
- DNA repair
- Environmental photobiology
- Nanotechnology in photobiology
- Photocarcinogenesis
- Photochemistry of biomolecules
- Photodynamic therapy
- Photomedicine
- Photomorphogenesis
- Photomovement
- Photoreception
- Photosensitization
- Photosynthesis
- Phototechnology
- Spectroscopy of biological systems
- UV and visible radiation effects and vision.