禽蛋壳膜结构对微生物渗透的影响:模拟研究

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-05-15 DOI:10.1016/j.biosystems.2024.105234
Seungwoo Sim , Cheol-Min Park , Sang-Hee Lee , Haeun Cho , Youngheum Ji , Heeso Noh , Sang-im Lee
{"title":"禽蛋壳膜结构对微生物渗透的影响:模拟研究","authors":"Seungwoo Sim ,&nbsp;Cheol-Min Park ,&nbsp;Sang-Hee Lee ,&nbsp;Haeun Cho ,&nbsp;Youngheum Ji ,&nbsp;Heeso Noh ,&nbsp;Sang-im Lee","doi":"10.1016/j.biosystems.2024.105234","DOIUrl":null,"url":null,"abstract":"<div><p>Avian eggshells exhibit excellent antimicrobial properties. In this study, we conducted simulation experiments to explore the defense mechanisms of eggshell membranes with regards to their physical features. We developed a mathematical model for the movement of microorganisms and estimated their penetration ratio into eggshell membranes based on several factors, including membrane thickness, microbial size, directional drift, and attachment probability to membrane fibers. These results not only suggest that an eggshell membrane with multiple layers and low porosity indicates high antimicrobial performance, but also imply that the fibrous network structure of the membrane might contribute to effective defense. Our simulation results aligned with experimental findings, specifically in measuring the penetration time of <em>Escherichia coli</em> through the eggshell membrane. We briefly discuss the significance and limitations of this pilot study, as well as the potential for these results, to serve as a foundation for the development of antimicrobial materials.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The effect of avian eggshell membrane structure on microbial penetration: A simulation study\",\"authors\":\"Seungwoo Sim ,&nbsp;Cheol-Min Park ,&nbsp;Sang-Hee Lee ,&nbsp;Haeun Cho ,&nbsp;Youngheum Ji ,&nbsp;Heeso Noh ,&nbsp;Sang-im Lee\",\"doi\":\"10.1016/j.biosystems.2024.105234\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Avian eggshells exhibit excellent antimicrobial properties. In this study, we conducted simulation experiments to explore the defense mechanisms of eggshell membranes with regards to their physical features. We developed a mathematical model for the movement of microorganisms and estimated their penetration ratio into eggshell membranes based on several factors, including membrane thickness, microbial size, directional drift, and attachment probability to membrane fibers. These results not only suggest that an eggshell membrane with multiple layers and low porosity indicates high antimicrobial performance, but also imply that the fibrous network structure of the membrane might contribute to effective defense. Our simulation results aligned with experimental findings, specifically in measuring the penetration time of <em>Escherichia coli</em> through the eggshell membrane. We briefly discuss the significance and limitations of this pilot study, as well as the potential for these results, to serve as a foundation for the development of antimicrobial materials.</p></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0303264724001199\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0303264724001199","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

禽类蛋壳具有出色的抗菌特性。在本研究中,我们进行了模拟实验,以探索蛋壳膜的物理特性对其防御机制的影响。我们建立了一个微生物运动的数学模型,并根据膜厚度、微生物大小、定向漂移和附着在膜纤维上的概率等几个因素估算了微生物对蛋壳膜的渗透率。这些结果不仅表明,多层、低孔隙率的蛋壳膜具有很高的抗菌性能,而且还意味着膜的纤维网络结构可能有助于有效防御。我们的模拟结果与实验结果一致,特别是在测量大肠杆菌穿透蛋壳膜的时间方面。我们简要讨论了这项试验研究的意义和局限性,以及这些结果作为抗菌材料开发基础的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The effect of avian eggshell membrane structure on microbial penetration: A simulation study

Avian eggshells exhibit excellent antimicrobial properties. In this study, we conducted simulation experiments to explore the defense mechanisms of eggshell membranes with regards to their physical features. We developed a mathematical model for the movement of microorganisms and estimated their penetration ratio into eggshell membranes based on several factors, including membrane thickness, microbial size, directional drift, and attachment probability to membrane fibers. These results not only suggest that an eggshell membrane with multiple layers and low porosity indicates high antimicrobial performance, but also imply that the fibrous network structure of the membrane might contribute to effective defense. Our simulation results aligned with experimental findings, specifically in measuring the penetration time of Escherichia coli through the eggshell membrane. We briefly discuss the significance and limitations of this pilot study, as well as the potential for these results, to serve as a foundation for the development of antimicrobial materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1