Ryo Shinohara, Soumendu Bagchi, Evgenya Simakov, S. Baryshev, Danny Perez
{"title":"金属表面的热和电场驱动射频击穿前驱体形成","authors":"Ryo Shinohara, Soumendu Bagchi, Evgenya Simakov, S. Baryshev, Danny Perez","doi":"10.1103/physrevaccelbeams.27.053101","DOIUrl":null,"url":null,"abstract":"The phenomenon of electric breakdown poses serious challenges to the design of devices that operate in high electric field environments. Experimental evidence points toward breakdown events that are accompanied by elevated temperatures and dark current spikes, which is attributed to high-asperity nanostructure formation that enhances the local electric field and triggers a runaway process. However, the exact mechanistic origin of such nanostructures under typical macroscopic operational conditions of electric field and magnetic-field-mediated heating remains poorly understood. In this work, we simulate the evolution of a copper surface under the combined action of the electric fields and elevated temperatures. Using a mesoscale curvature-driven surface evolution model, we show how a copper surface can undergo a type of dynamical instability that naturally leads to the formation of sharp asperities in realistic experimental conditions. Exploring the combined effect of fields and temperature rise, we identify the critical regimes that allow for the formation of breakdown precursors. The results show that thermoelastic stresses, while not essential, can significantly lower the critical electric field required for runaway surface instability, which is consistent with experimental observations that thermal effects can increase breakdown rates.\n \n \n \n \n Published by the American Physical Society\n 2024\n \n \n","PeriodicalId":54297,"journal":{"name":"Physical Review Accelerators and Beams","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermal and electric field driven rf breakdown precursor formation on metal surfaces\",\"authors\":\"Ryo Shinohara, Soumendu Bagchi, Evgenya Simakov, S. Baryshev, Danny Perez\",\"doi\":\"10.1103/physrevaccelbeams.27.053101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The phenomenon of electric breakdown poses serious challenges to the design of devices that operate in high electric field environments. Experimental evidence points toward breakdown events that are accompanied by elevated temperatures and dark current spikes, which is attributed to high-asperity nanostructure formation that enhances the local electric field and triggers a runaway process. However, the exact mechanistic origin of such nanostructures under typical macroscopic operational conditions of electric field and magnetic-field-mediated heating remains poorly understood. In this work, we simulate the evolution of a copper surface under the combined action of the electric fields and elevated temperatures. Using a mesoscale curvature-driven surface evolution model, we show how a copper surface can undergo a type of dynamical instability that naturally leads to the formation of sharp asperities in realistic experimental conditions. Exploring the combined effect of fields and temperature rise, we identify the critical regimes that allow for the formation of breakdown precursors. The results show that thermoelastic stresses, while not essential, can significantly lower the critical electric field required for runaway surface instability, which is consistent with experimental observations that thermal effects can increase breakdown rates.\\n \\n \\n \\n \\n Published by the American Physical Society\\n 2024\\n \\n \\n\",\"PeriodicalId\":54297,\"journal\":{\"name\":\"Physical Review Accelerators and Beams\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review Accelerators and Beams\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevaccelbeams.27.053101\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Accelerators and Beams","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevaccelbeams.27.053101","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
Thermal and electric field driven rf breakdown precursor formation on metal surfaces
The phenomenon of electric breakdown poses serious challenges to the design of devices that operate in high electric field environments. Experimental evidence points toward breakdown events that are accompanied by elevated temperatures and dark current spikes, which is attributed to high-asperity nanostructure formation that enhances the local electric field and triggers a runaway process. However, the exact mechanistic origin of such nanostructures under typical macroscopic operational conditions of electric field and magnetic-field-mediated heating remains poorly understood. In this work, we simulate the evolution of a copper surface under the combined action of the electric fields and elevated temperatures. Using a mesoscale curvature-driven surface evolution model, we show how a copper surface can undergo a type of dynamical instability that naturally leads to the formation of sharp asperities in realistic experimental conditions. Exploring the combined effect of fields and temperature rise, we identify the critical regimes that allow for the formation of breakdown precursors. The results show that thermoelastic stresses, while not essential, can significantly lower the critical electric field required for runaway surface instability, which is consistent with experimental observations that thermal effects can increase breakdown rates.
Published by the American Physical Society
2024
期刊介绍:
Physical Review Special Topics - Accelerators and Beams (PRST-AB) is a peer-reviewed, purely electronic journal, distributed without charge to readers and funded by sponsors from national and international laboratories and other partners. The articles are published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License.
It covers the full range of accelerator science and technology; subsystem and component technologies; beam dynamics; accelerator applications; and design, operation, and improvement of accelerators used in science and industry. This includes accelerators for high-energy and nuclear physics, synchrotron-radiation production, spallation neutron sources, medical therapy, and intense-beam applications.