脂肪酸氧化诱导的 HIF-1α 激活通过上调 NT5C2 和 XDH 促进肝脏尿酸盐合成

Ningning Liang, Xuan Yuan, Lili Zhang, Xia Shen, Shanshan Zhong, Luxiao Li, Rui Li, Xiaodong Xu, Xin Chen, Chunzhao Yin, Shuyuan Guo, Jing Ge, Mingjiang Zhu, Yongzhen Tao, Shiting Chen, Yongbing Qian, Nicola Dalbeth, Tony R. Merriman, R. Terkeltaub, Changgui Li, Qiang Xia, Huiyong Yin
{"title":"脂肪酸氧化诱导的 HIF-1α 激活通过上调 NT5C2 和 XDH 促进肝脏尿酸盐合成","authors":"Ningning Liang, Xuan Yuan, Lili Zhang, Xia Shen, Shanshan Zhong, Luxiao Li, Rui Li, Xiaodong Xu, Xin Chen, Chunzhao Yin, Shuyuan Guo, Jing Ge, Mingjiang Zhu, Yongzhen Tao, Shiting Chen, Yongbing Qian, Nicola Dalbeth, Tony R. Merriman, R. Terkeltaub, Changgui Li, Qiang Xia, Huiyong Yin","doi":"10.1093/lifemeta/loae018","DOIUrl":null,"url":null,"abstract":"\n Dyslipidemia affects approximately half of all people with gout, and prior Mendelian randomization analysis suggested a causal role for elevated triglycerides in hyperuricemia (HU), but the underlying mechanisms remain elusive. We hypothesize that dyslipidemia promotes hepatic urate biosynthesis in HU and gout and fatty acid (FA) oxidation (FAO) drives this process. Here we developed a targeted metabolomics to quantify major metabolites in purine metabolic pathway in the sera of a human cohort with HU, gout, and normaluricemic controls. We found that the levels of major purine metabolites and multiple FAs were significantly elevated in HU and gout, compared to normouricemic controls, whereas hypoxathine showed opposite trend. Furthermore, the levels of multiple serum FAs were positively correlated with urate, xanthine, and inosine but negatively with hypoxanthine, which was also observed in a murine model of high-fat diet-induced HU. Using a stable isotope labeled metabolic flux assay, we discovered that exogenous hypoxanthine plays a key role in urate synthesis. Moreover, FAO-induced hypoxia-inducible factor 1 alpha (HIF-1α) activation upregulated 5’-nucleotidase II (NT5C2) and xanthine dehydrogenase (XDH) levels to facilitate hypoxanthine uptake from blood to liver and activation of urate biosynthesis. Our findings was further supported by data in human hepatocytes and 50 paired serum and liver tissues from liver transplant donors.Together, this study uncovers a mechanism by which FAO promotes hepatic urate synthesis by activating HIF-1α-NT5C2/XDH pathways, directly linking lipid metabolism to HU.","PeriodicalId":74074,"journal":{"name":"Life metabolism","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fatty acid oxidation-induced HIF-1α activation facilitates hepatic urate synthesis through upregulating NT5C2 and XDH\",\"authors\":\"Ningning Liang, Xuan Yuan, Lili Zhang, Xia Shen, Shanshan Zhong, Luxiao Li, Rui Li, Xiaodong Xu, Xin Chen, Chunzhao Yin, Shuyuan Guo, Jing Ge, Mingjiang Zhu, Yongzhen Tao, Shiting Chen, Yongbing Qian, Nicola Dalbeth, Tony R. Merriman, R. Terkeltaub, Changgui Li, Qiang Xia, Huiyong Yin\",\"doi\":\"10.1093/lifemeta/loae018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Dyslipidemia affects approximately half of all people with gout, and prior Mendelian randomization analysis suggested a causal role for elevated triglycerides in hyperuricemia (HU), but the underlying mechanisms remain elusive. We hypothesize that dyslipidemia promotes hepatic urate biosynthesis in HU and gout and fatty acid (FA) oxidation (FAO) drives this process. Here we developed a targeted metabolomics to quantify major metabolites in purine metabolic pathway in the sera of a human cohort with HU, gout, and normaluricemic controls. We found that the levels of major purine metabolites and multiple FAs were significantly elevated in HU and gout, compared to normouricemic controls, whereas hypoxathine showed opposite trend. Furthermore, the levels of multiple serum FAs were positively correlated with urate, xanthine, and inosine but negatively with hypoxanthine, which was also observed in a murine model of high-fat diet-induced HU. Using a stable isotope labeled metabolic flux assay, we discovered that exogenous hypoxanthine plays a key role in urate synthesis. Moreover, FAO-induced hypoxia-inducible factor 1 alpha (HIF-1α) activation upregulated 5’-nucleotidase II (NT5C2) and xanthine dehydrogenase (XDH) levels to facilitate hypoxanthine uptake from blood to liver and activation of urate biosynthesis. Our findings was further supported by data in human hepatocytes and 50 paired serum and liver tissues from liver transplant donors.Together, this study uncovers a mechanism by which FAO promotes hepatic urate synthesis by activating HIF-1α-NT5C2/XDH pathways, directly linking lipid metabolism to HU.\",\"PeriodicalId\":74074,\"journal\":{\"name\":\"Life metabolism\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Life metabolism\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/lifemeta/loae018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Life metabolism","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/lifemeta/loae018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

血脂异常影响着大约一半的痛风患者,先前的孟德尔随机分析表明,甘油三酯升高在高尿酸血症(HU)中起着因果作用,但其潜在的机制仍然难以捉摸。我们假设血脂异常会促进高尿酸血症和痛风中肝脏尿酸盐的生物合成,而脂肪酸(FA)氧化(FAO)会推动这一过程。在此,我们开发了一种靶向代谢组学方法,以定量检测患有高尿酸血症、痛风和正常尿酸血症对照组人群血清中嘌呤代谢途径中的主要代谢物。我们发现,与正常尿酸血症对照组相比,HU 和痛风患者血清中主要嘌呤代谢物和多种脂肪酸的水平显著升高,而低氧血症患者则呈现相反的趋势。此外,多种血清脂肪酸的水平与尿酸盐、黄嘌呤和肌苷呈正相关,但与次黄嘌呤呈负相关,这在高脂饮食诱导的HU小鼠模型中也观察到了。通过使用稳定同位素标记的代谢通量测定,我们发现外源性次黄嘌呤在尿酸盐合成中起着关键作用。此外,粮农组织诱导的缺氧诱导因子1α(HIF-1α)激活可上调5'-核苷酸酶II(NT5C2)和黄嘌呤脱氢酶(XDH)的水平,从而促进次黄嘌呤从血液到肝脏的摄取,并激活尿酸盐的生物合成。总之,这项研究揭示了粮农组织通过激活HIF-1α-NT5C2/XDH途径促进肝脏尿酸盐合成的机制,将脂质代谢与HU直接联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fatty acid oxidation-induced HIF-1α activation facilitates hepatic urate synthesis through upregulating NT5C2 and XDH
Dyslipidemia affects approximately half of all people with gout, and prior Mendelian randomization analysis suggested a causal role for elevated triglycerides in hyperuricemia (HU), but the underlying mechanisms remain elusive. We hypothesize that dyslipidemia promotes hepatic urate biosynthesis in HU and gout and fatty acid (FA) oxidation (FAO) drives this process. Here we developed a targeted metabolomics to quantify major metabolites in purine metabolic pathway in the sera of a human cohort with HU, gout, and normaluricemic controls. We found that the levels of major purine metabolites and multiple FAs were significantly elevated in HU and gout, compared to normouricemic controls, whereas hypoxathine showed opposite trend. Furthermore, the levels of multiple serum FAs were positively correlated with urate, xanthine, and inosine but negatively with hypoxanthine, which was also observed in a murine model of high-fat diet-induced HU. Using a stable isotope labeled metabolic flux assay, we discovered that exogenous hypoxanthine plays a key role in urate synthesis. Moreover, FAO-induced hypoxia-inducible factor 1 alpha (HIF-1α) activation upregulated 5’-nucleotidase II (NT5C2) and xanthine dehydrogenase (XDH) levels to facilitate hypoxanthine uptake from blood to liver and activation of urate biosynthesis. Our findings was further supported by data in human hepatocytes and 50 paired serum and liver tissues from liver transplant donors.Together, this study uncovers a mechanism by which FAO promotes hepatic urate synthesis by activating HIF-1α-NT5C2/XDH pathways, directly linking lipid metabolism to HU.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
0
期刊最新文献
Senescent glia-bridging neuronal mitochondrial dysfunction and lipid accumulation in aging. Gut bacterial metabolism produces neuroactive steroids in pregnant women Potential therapeutic strategies for MASH: from preclinical to clinical development Immuno-electron microscopy localizes Caenorhabditis elegans vitellogenins along the classic exocytosis route Protecting liver health with microbial-derived succinylated bile acids
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1