{"title":"构建用于高压钠离子电池的层状结构氧化物正极材料的局部电子结构","authors":"Dongrun Yang, Xuan-Wen Gao, Guoping Gao, Qingsong Lai, Tianzhen Ren, Qinfen Gu, Zhaomeng Liu, Wen-Bin Luo","doi":"10.1002/cey2.574","DOIUrl":null,"url":null,"abstract":"<p>As the cyclable sodium ions' primary suppliers, O3-type layer-structured manganese-based oxides are recognized as one of the most competitive cathode candidates for sodium-ion batteries. Suffering from complex structural transformations and transition metal migration during the sodium intercalation/deintercalation process, particularly at high voltage, the energy density and lifespan cannot satisfy the increasing demand. The orbital and electronic structure of the octahedral center metal element plays an important role in maintaining the octahedral structural integrity and improving the Na<sup>+</sup> diffusivity by the introduced heterogeneous [Me–O] (Me: transition metals) chemical bonding. Herein, inspired by the 4f and 5d orbital bonding possibility from the abundant configuration of extranuclear electrons and large ion radius, O3-type Na[La<sub>0.01</sub>Ni<sub>0.3</sub>Mn<sub>0.54</sub>Cu<sub>0.1</sub>Ti<sub>0.05</sub>]O<sub>2</sub> was synthesized with a nearly single crystal structure. Based on the experimental and computational results, the introduced heterogeneous [La–O] chemical bond with larger bond strength can not only ensure the stability of the lattice oxygen framework and the reversibility of oxygen redox but also optimize the oxygen local electronic structure resulting from La 5d and O 2p orbital mixing due to O 2p → La 5d charge transfer. It delivers an optimal electrochemical performance with a high energy density and cycling lifespan.</p>","PeriodicalId":33706,"journal":{"name":"Carbon Energy","volume":"6 10","pages":""},"PeriodicalIF":19.5000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cey2.574","citationCount":"0","resultStr":"{\"title\":\"Local electronic structure constructing of layer-structured oxide cathode material for high-voltage sodium-ion batteries\",\"authors\":\"Dongrun Yang, Xuan-Wen Gao, Guoping Gao, Qingsong Lai, Tianzhen Ren, Qinfen Gu, Zhaomeng Liu, Wen-Bin Luo\",\"doi\":\"10.1002/cey2.574\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>As the cyclable sodium ions' primary suppliers, O3-type layer-structured manganese-based oxides are recognized as one of the most competitive cathode candidates for sodium-ion batteries. Suffering from complex structural transformations and transition metal migration during the sodium intercalation/deintercalation process, particularly at high voltage, the energy density and lifespan cannot satisfy the increasing demand. The orbital and electronic structure of the octahedral center metal element plays an important role in maintaining the octahedral structural integrity and improving the Na<sup>+</sup> diffusivity by the introduced heterogeneous [Me–O] (Me: transition metals) chemical bonding. Herein, inspired by the 4f and 5d orbital bonding possibility from the abundant configuration of extranuclear electrons and large ion radius, O3-type Na[La<sub>0.01</sub>Ni<sub>0.3</sub>Mn<sub>0.54</sub>Cu<sub>0.1</sub>Ti<sub>0.05</sub>]O<sub>2</sub> was synthesized with a nearly single crystal structure. Based on the experimental and computational results, the introduced heterogeneous [La–O] chemical bond with larger bond strength can not only ensure the stability of the lattice oxygen framework and the reversibility of oxygen redox but also optimize the oxygen local electronic structure resulting from La 5d and O 2p orbital mixing due to O 2p → La 5d charge transfer. It delivers an optimal electrochemical performance with a high energy density and cycling lifespan.</p>\",\"PeriodicalId\":33706,\"journal\":{\"name\":\"Carbon Energy\",\"volume\":\"6 10\",\"pages\":\"\"},\"PeriodicalIF\":19.5000,\"publicationDate\":\"2024-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cey2.574\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Energy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cey2.574\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Energy","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cey2.574","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
作为可循环钠离子的主要供应者,O3 型层结构锰基氧化物被认为是钠离子电池最具竞争力的阴极候选材料之一。由于在钠插层/脱插层过程中存在复杂的结构转变和过渡金属迁移,特别是在高电压下,其能量密度和寿命无法满足日益增长的需求。八面体中心金属元素的轨道和电子结构在维持八面体结构完整性和通过引入异质[Me-O](Me:过渡金属)化学键提高 Na+ 扩散性方面发挥着重要作用。本文受核外电子丰富构型和大离子半径带来的 4f 和 5d 轨道成键可能性的启发,合成了具有近似单晶结构的 O3 型 Na[La0.01Ni0.3Mn0.54Cu0.1Ti0.05]O2 。根据实验和计算结果,引入的键强度较大的异质[La-O]化学键不仅能保证晶格氧框架的稳定性和氧氧化还原的可逆性,还能优化由于 O 2p→La 5d 电荷转移导致的 La 5d 和 O 2p 轨道混合所产生的氧局部电子结构。它具有最佳的电化学性能、高能量密度和循环寿命。
Local electronic structure constructing of layer-structured oxide cathode material for high-voltage sodium-ion batteries
As the cyclable sodium ions' primary suppliers, O3-type layer-structured manganese-based oxides are recognized as one of the most competitive cathode candidates for sodium-ion batteries. Suffering from complex structural transformations and transition metal migration during the sodium intercalation/deintercalation process, particularly at high voltage, the energy density and lifespan cannot satisfy the increasing demand. The orbital and electronic structure of the octahedral center metal element plays an important role in maintaining the octahedral structural integrity and improving the Na+ diffusivity by the introduced heterogeneous [Me–O] (Me: transition metals) chemical bonding. Herein, inspired by the 4f and 5d orbital bonding possibility from the abundant configuration of extranuclear electrons and large ion radius, O3-type Na[La0.01Ni0.3Mn0.54Cu0.1Ti0.05]O2 was synthesized with a nearly single crystal structure. Based on the experimental and computational results, the introduced heterogeneous [La–O] chemical bond with larger bond strength can not only ensure the stability of the lattice oxygen framework and the reversibility of oxygen redox but also optimize the oxygen local electronic structure resulting from La 5d and O 2p orbital mixing due to O 2p → La 5d charge transfer. It delivers an optimal electrochemical performance with a high energy density and cycling lifespan.
期刊介绍:
Carbon Energy is an international journal that focuses on cutting-edge energy technology involving carbon utilization and carbon emission control. It provides a platform for researchers to communicate their findings and critical opinions and aims to bring together the communities of advanced material and energy. The journal covers a broad range of energy technologies, including energy storage, photocatalysis, electrocatalysis, photoelectrocatalysis, and thermocatalysis. It covers all forms of energy, from conventional electric and thermal energy to those that catalyze chemical and biological transformations. Additionally, Carbon Energy promotes new technologies for controlling carbon emissions and the green production of carbon materials. The journal welcomes innovative interdisciplinary research with wide impact. It is indexed in various databases, including Advanced Technologies & Aerospace Collection/Database, Biological Science Collection/Database, CAS, DOAJ, Environmental Science Collection/Database, Web of Science and Technology Collection.