利用混沌群智能技术对质子交换膜燃料电池进行参数优化

IF 1.8 4区 工程技术 Q3 ENGINEERING, CHEMICAL Chemical Engineering & Technology Pub Date : 2024-05-17 DOI:10.1002/ceat.202300378
Vasudha Kaura, Bhavya Narang, Dr. Parminder Singh, Amanpreet Sandhu
{"title":"利用混沌群智能技术对质子交换膜燃料电池进行参数优化","authors":"Vasudha Kaura,&nbsp;Bhavya Narang,&nbsp;Dr. Parminder Singh,&nbsp;Amanpreet Sandhu","doi":"10.1002/ceat.202300378","DOIUrl":null,"url":null,"abstract":"<p>The proton exchange membrane fuel cell (PEMFC) converts chemical energy into electricity without pollution or noise. PEMFC has a stable electrolyte, reliable, fast start-up, and lightweight portability. Optimal PEMFC parameter prediction is difficult. Due to inaccurate estimation, many meta-heuristic models are inaccurate. Particle swarm, Ant colony, and grey wolf algorithms are tested for fuel cell parameter estimation. These traditional algorithms benefit from chaotic maps for exploitation and exploration. Analyzing V–I and P–I polarization curves, hybrid approaches estimate unknown parameters. Results are compared with others to support the identifying strategy. This project examined SR-12 and NedSstack PS-6 PEMFC stacks. The objective function was shown by the sum of square errors between the experiments, and once an appropriate map is identified, the single chaotic map inclusion method can perform better than the multiple chaotic map scheme, and the “Iterative” approach in chaotic swarm is the most promising for multidimensional challenges.</p>","PeriodicalId":10083,"journal":{"name":"Chemical Engineering & Technology","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parametric Optimization of Proton Exchange Membrane Fuel Cell Using Chaotic Swarm Intelligence Technique\",\"authors\":\"Vasudha Kaura,&nbsp;Bhavya Narang,&nbsp;Dr. Parminder Singh,&nbsp;Amanpreet Sandhu\",\"doi\":\"10.1002/ceat.202300378\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The proton exchange membrane fuel cell (PEMFC) converts chemical energy into electricity without pollution or noise. PEMFC has a stable electrolyte, reliable, fast start-up, and lightweight portability. Optimal PEMFC parameter prediction is difficult. Due to inaccurate estimation, many meta-heuristic models are inaccurate. Particle swarm, Ant colony, and grey wolf algorithms are tested for fuel cell parameter estimation. These traditional algorithms benefit from chaotic maps for exploitation and exploration. Analyzing V–I and P–I polarization curves, hybrid approaches estimate unknown parameters. Results are compared with others to support the identifying strategy. This project examined SR-12 and NedSstack PS-6 PEMFC stacks. The objective function was shown by the sum of square errors between the experiments, and once an appropriate map is identified, the single chaotic map inclusion method can perform better than the multiple chaotic map scheme, and the “Iterative” approach in chaotic swarm is the most promising for multidimensional challenges.</p>\",\"PeriodicalId\":10083,\"journal\":{\"name\":\"Chemical Engineering & Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Engineering & Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ceat.202300378\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering & Technology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ceat.202300378","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

质子交换膜燃料电池(PEMFC)可将化学能转化为电能,且无污染、无噪音。质子交换膜燃料电池具有稳定的电解质、可靠、快速启动和轻巧便携等特点。最佳的 PEMFC 参数预测非常困难。由于估计不准确,许多元启发式模型都不准确。粒子群、蚁群和灰狼算法已用于燃料电池参数估计的测试。这些传统算法得益于混沌图的利用和探索。通过分析 V-I 和 P-I 极化曲线,混合方法估算了未知参数。将结果与其他方法进行比较,以支持识别策略。该项目研究了 SR-12 和 NedSstack PS-6 PEMFC 堆。目标函数由实验之间的平方误差之和表示,一旦识别出合适的图谱,单混沌图谱包含法比多混沌图谱方案表现更好,而混沌群中的 "迭代 "方法对于多维挑战是最有前途的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Parametric Optimization of Proton Exchange Membrane Fuel Cell Using Chaotic Swarm Intelligence Technique

The proton exchange membrane fuel cell (PEMFC) converts chemical energy into electricity without pollution or noise. PEMFC has a stable electrolyte, reliable, fast start-up, and lightweight portability. Optimal PEMFC parameter prediction is difficult. Due to inaccurate estimation, many meta-heuristic models are inaccurate. Particle swarm, Ant colony, and grey wolf algorithms are tested for fuel cell parameter estimation. These traditional algorithms benefit from chaotic maps for exploitation and exploration. Analyzing V–I and P–I polarization curves, hybrid approaches estimate unknown parameters. Results are compared with others to support the identifying strategy. This project examined SR-12 and NedSstack PS-6 PEMFC stacks. The objective function was shown by the sum of square errors between the experiments, and once an appropriate map is identified, the single chaotic map inclusion method can perform better than the multiple chaotic map scheme, and the “Iterative” approach in chaotic swarm is the most promising for multidimensional challenges.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical Engineering & Technology
Chemical Engineering & Technology 工程技术-工程:化工
CiteScore
3.80
自引率
4.80%
发文量
315
审稿时长
5.5 months
期刊介绍: This is the journal for chemical engineers looking for first-hand information in all areas of chemical and process engineering. Chemical Engineering & Technology is: Competent with contributions written and refereed by outstanding professionals from around the world. Essential because it is an international forum for the exchange of ideas and experiences. Topical because its articles treat the very latest developments in the field.
期刊最新文献
Cover Picture: Chem. Eng. Technol. 11/2024 Editorial Board: Chem. Eng. Technol. 11/2024 Overview Contents: Chem. Eng. Technol. 11/2024 Photoelectrochemical Technology for Solar Fuel: Green Hydrogen, Carbon Dioxide Capture, and Ammonia Production Cover Picture: Chem. Eng. Technol. 10/2024
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1