Laurence Boily, L. Michaud, Marie-Lou Garon, Rémy Marcotte
{"title":"高倍多焦距隐形眼镜的光学区域变化对全球闪光多焦距视网膜成像的影响。","authors":"Laurence Boily, L. Michaud, Marie-Lou Garon, Rémy Marcotte","doi":"10.1097/ICL.0000000000001099","DOIUrl":null,"url":null,"abstract":"OBJECTIVES\nTo evaluate the retinal response to myopic defocus after the wear of soft multifocal contact lenses with high addition through electroretinography.\n\n\nMETHODS\nTwenty-seven participants meeting inclusion criteria were enrolled. Tropicamide 1% drops (2) were instilled. Participants were then fitted with three different contact lenses: a single-vision spherical lens (SE +3.00 D), L1, serving as a control, and two soft multifocal lens designs (SE +3.00 D/add +10 D), one with a central distance zone of 4.0 mm (L2) and one with a central distance zone of 7.0 mm (L3). A global flash multifocal electroretinography was performed. Direct component (DC) amplitude, DC peak time, induced component (IC) amplitude, and IC peak time were recorded. Waveforms were grouped into five concentric areas, covering from 0° to 24° of retinal eccentricity. Differences of L2/L3 versus L1 were analyzed with t tests. Finally, correlations were calculated between the percentage of defocus in the pupil area versus the electroretinography results.\n\n\nRESULTS\nResults show that the DC amplitude, caused mainly by photoreceptors and bipolar cells, is not influenced by the design of the lenses. The IC amplitude, however, is significantly decreased when the lens with a smaller optical zone (L2) is worn. This significant difference only concerns the ring 5, which corresponds to a retinal eccentricity of 15.7° to 24.0°.\n\n\nCONCLUSION\nSoft multifocal lens designs influence the peripheral retinal reaction to defocus. A larger treatment zone seems to significantly impact the retinal response to defocus between 15.7° and 24.0° of eccentricity from the macula.","PeriodicalId":502139,"journal":{"name":"Eye & Contact Lens","volume":"13 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of Optical Zone Variation of High-Addition Multifocal Contact Lenses on the Global Flash Multifocal Electroretinography.\",\"authors\":\"Laurence Boily, L. Michaud, Marie-Lou Garon, Rémy Marcotte\",\"doi\":\"10.1097/ICL.0000000000001099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"OBJECTIVES\\nTo evaluate the retinal response to myopic defocus after the wear of soft multifocal contact lenses with high addition through electroretinography.\\n\\n\\nMETHODS\\nTwenty-seven participants meeting inclusion criteria were enrolled. Tropicamide 1% drops (2) were instilled. Participants were then fitted with three different contact lenses: a single-vision spherical lens (SE +3.00 D), L1, serving as a control, and two soft multifocal lens designs (SE +3.00 D/add +10 D), one with a central distance zone of 4.0 mm (L2) and one with a central distance zone of 7.0 mm (L3). A global flash multifocal electroretinography was performed. Direct component (DC) amplitude, DC peak time, induced component (IC) amplitude, and IC peak time were recorded. Waveforms were grouped into five concentric areas, covering from 0° to 24° of retinal eccentricity. Differences of L2/L3 versus L1 were analyzed with t tests. Finally, correlations were calculated between the percentage of defocus in the pupil area versus the electroretinography results.\\n\\n\\nRESULTS\\nResults show that the DC amplitude, caused mainly by photoreceptors and bipolar cells, is not influenced by the design of the lenses. The IC amplitude, however, is significantly decreased when the lens with a smaller optical zone (L2) is worn. This significant difference only concerns the ring 5, which corresponds to a retinal eccentricity of 15.7° to 24.0°.\\n\\n\\nCONCLUSION\\nSoft multifocal lens designs influence the peripheral retinal reaction to defocus. A larger treatment zone seems to significantly impact the retinal response to defocus between 15.7° and 24.0° of eccentricity from the macula.\",\"PeriodicalId\":502139,\"journal\":{\"name\":\"Eye & Contact Lens\",\"volume\":\"13 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Eye & Contact Lens\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1097/ICL.0000000000001099\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eye & Contact Lens","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1097/ICL.0000000000001099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effects of Optical Zone Variation of High-Addition Multifocal Contact Lenses on the Global Flash Multifocal Electroretinography.
OBJECTIVES
To evaluate the retinal response to myopic defocus after the wear of soft multifocal contact lenses with high addition through electroretinography.
METHODS
Twenty-seven participants meeting inclusion criteria were enrolled. Tropicamide 1% drops (2) were instilled. Participants were then fitted with three different contact lenses: a single-vision spherical lens (SE +3.00 D), L1, serving as a control, and two soft multifocal lens designs (SE +3.00 D/add +10 D), one with a central distance zone of 4.0 mm (L2) and one with a central distance zone of 7.0 mm (L3). A global flash multifocal electroretinography was performed. Direct component (DC) amplitude, DC peak time, induced component (IC) amplitude, and IC peak time were recorded. Waveforms were grouped into five concentric areas, covering from 0° to 24° of retinal eccentricity. Differences of L2/L3 versus L1 were analyzed with t tests. Finally, correlations were calculated between the percentage of defocus in the pupil area versus the electroretinography results.
RESULTS
Results show that the DC amplitude, caused mainly by photoreceptors and bipolar cells, is not influenced by the design of the lenses. The IC amplitude, however, is significantly decreased when the lens with a smaller optical zone (L2) is worn. This significant difference only concerns the ring 5, which corresponds to a retinal eccentricity of 15.7° to 24.0°.
CONCLUSION
Soft multifocal lens designs influence the peripheral retinal reaction to defocus. A larger treatment zone seems to significantly impact the retinal response to defocus between 15.7° and 24.0° of eccentricity from the macula.