磁流变抛光技术的研究进展:综述

IF 4.2 2区 工程技术 Q2 ENGINEERING, MANUFACTURING Advances in Manufacturing Pub Date : 2024-05-16 DOI:10.1007/s40436-024-00490-4
Ming-Ming Lu, Ya-Kun Yang, Jie-Qiong Lin, Yong-Sheng Du, Xiao-Qin Zhou
{"title":"磁流变抛光技术的研究进展:综述","authors":"Ming-Ming Lu,&nbsp;Ya-Kun Yang,&nbsp;Jie-Qiong Lin,&nbsp;Yong-Sheng Du,&nbsp;Xiao-Qin Zhou","doi":"10.1007/s40436-024-00490-4","DOIUrl":null,"url":null,"abstract":"<div><p>As an essential link in ultra-precision machining technology, various new surface polishing technologies and processes have always attracted continuous in-depth research and exploration by researchers. As a new research direction of ultra-precision machining technology, magnetorheological polishing technology has become an important part. The polishing materials and magnetorheological fluids involved in the process of magnetorheological polishing are reviewed. The polishing principle, equipment development, theoretical research and process research of magnetorheological polishing technologies, such as the wheel-type, cluster-type, ball-type, disc-type and other types, derived from the magnetorheological polishing process, are reviewed. The above magnetorheological polishing technologies are analyzed and compared from the perspective of processing accuracy, processing efficiency and application range. The curvature adaptive magnetorheological polishing technology with a circulatory system is proposed to achieve high efficiency and high-quality polishing.</p></div>","PeriodicalId":7342,"journal":{"name":"Advances in Manufacturing","volume":"12 4","pages":"642 - 678"},"PeriodicalIF":4.2000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40436-024-00490-4.pdf","citationCount":"0","resultStr":"{\"title\":\"Research progress of magnetorheological polishing technology: a review\",\"authors\":\"Ming-Ming Lu,&nbsp;Ya-Kun Yang,&nbsp;Jie-Qiong Lin,&nbsp;Yong-Sheng Du,&nbsp;Xiao-Qin Zhou\",\"doi\":\"10.1007/s40436-024-00490-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>As an essential link in ultra-precision machining technology, various new surface polishing technologies and processes have always attracted continuous in-depth research and exploration by researchers. As a new research direction of ultra-precision machining technology, magnetorheological polishing technology has become an important part. The polishing materials and magnetorheological fluids involved in the process of magnetorheological polishing are reviewed. The polishing principle, equipment development, theoretical research and process research of magnetorheological polishing technologies, such as the wheel-type, cluster-type, ball-type, disc-type and other types, derived from the magnetorheological polishing process, are reviewed. The above magnetorheological polishing technologies are analyzed and compared from the perspective of processing accuracy, processing efficiency and application range. The curvature adaptive magnetorheological polishing technology with a circulatory system is proposed to achieve high efficiency and high-quality polishing.</p></div>\",\"PeriodicalId\":7342,\"journal\":{\"name\":\"Advances in Manufacturing\",\"volume\":\"12 4\",\"pages\":\"642 - 678\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s40436-024-00490-4.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Manufacturing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40436-024-00490-4\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s40436-024-00490-4","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

摘要

作为超精密加工技术的重要环节,各种新型表面抛光技术和工艺一直吸引着科研人员不断深入研究和探索。作为超精密加工技术的一个新的研究方向,磁流变抛光技术已成为其中的重要组成部分。本文综述了磁流变抛光过程中所涉及的抛光材料和磁流变液体。综述了由磁流变抛光工艺衍生出的轮式、集束式、球式、盘式等磁流变抛光技术的抛光原理、设备开发、理论研究和工艺研究。从加工精度、加工效率和应用范围等方面对上述磁流变抛光技术进行了分析和比较。提出了具有循环系统的曲率自适应磁流变抛光技术,以实现高效率、高质量的抛光。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Research progress of magnetorheological polishing technology: a review

As an essential link in ultra-precision machining technology, various new surface polishing technologies and processes have always attracted continuous in-depth research and exploration by researchers. As a new research direction of ultra-precision machining technology, magnetorheological polishing technology has become an important part. The polishing materials and magnetorheological fluids involved in the process of magnetorheological polishing are reviewed. The polishing principle, equipment development, theoretical research and process research of magnetorheological polishing technologies, such as the wheel-type, cluster-type, ball-type, disc-type and other types, derived from the magnetorheological polishing process, are reviewed. The above magnetorheological polishing technologies are analyzed and compared from the perspective of processing accuracy, processing efficiency and application range. The curvature adaptive magnetorheological polishing technology with a circulatory system is proposed to achieve high efficiency and high-quality polishing.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Manufacturing
Advances in Manufacturing Materials Science-Polymers and Plastics
CiteScore
9.10
自引率
3.80%
发文量
274
期刊介绍: As an innovative, fundamental and scientific journal, Advances in Manufacturing aims to describe the latest regional and global research results and forefront developments in advanced manufacturing field. As such, it serves as an international platform for academic exchange between experts, scholars and researchers in this field. All articles in Advances in Manufacturing are peer reviewed. Respected scholars from the fields of advanced manufacturing fields will be invited to write some comments. We also encourage and give priority to research papers that have made major breakthroughs or innovations in the fundamental theory. The targeted fields include: manufacturing automation, mechatronics and robotics, precision manufacturing and control, micro-nano-manufacturing, green manufacturing, design in manufacturing, metallic and nonmetallic materials in manufacturing, metallurgical process, etc. The forms of articles include (but not limited to): academic articles, research reports, and general reviews.
期刊最新文献
Grinding defect characteristics and removal mechanism of unidirectional Cf/SiC composites The effect of the slope angle and the magnetic field on the surface quality of nickel-based superalloys in blasting erosion arc machining Study on the mechanism of burr formation in ultrasonic vibration-assisted honing 9Cr18MoV valve sleeve Flexible modification and texture prediction and control method of internal gearing power honing tooth surface ·AI-enabled intelligent cockpit proactive affective interaction: middle-level feature fusion dual-branch deep learning network for driver emotion recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1