通过锂热还原反应合成提高硅复合负极材料中硅酸锂的充电效率

IF 6.4 3区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Advanced Materials Technologies Pub Date : 2024-05-16 DOI:10.1002/admt.202302055
Kyoung-Jin Jeong, Sarwar Hossen, Md Tareq Rahman, Joon Sub Shim, Dong-Hee Lee, Hayk H. Nersisyan, JongHyeon Lee
{"title":"通过锂热还原反应合成提高硅复合负极材料中硅酸锂的充电效率","authors":"Kyoung-Jin Jeong,&nbsp;Sarwar Hossen,&nbsp;Md Tareq Rahman,&nbsp;Joon Sub Shim,&nbsp;Dong-Hee Lee,&nbsp;Hayk H. Nersisyan,&nbsp;JongHyeon Lee","doi":"10.1002/admt.202302055","DOIUrl":null,"url":null,"abstract":"<p>This study synthesizes silicon (Si) powders with lithium silicates including lithium orthosilicate (Li<sub>4</sub>SiO<sub>4</sub>), lithium metasilicate (Li<sub>2</sub>SiO<sub>3</sub>), and lithium disilicate (Li<sub>2</sub>Si<sub>2</sub>O<sub>5</sub>), creating a composite structure of crystalline Si within a Li<sub>x</sub>Si<sub>y</sub>O<sub>z</sub> matrix through the lithiothermic reduction reaction (LTRR) process. The reduction of Li-ion consumption of the anode is investigated by 1) initial solid electrolyte interphase (SEI) layer formation, 2) SEI layer formation in response to Si expansion-induced damage, 3) trapping of Li ions at Si defects, and 4) side reactions during initial charge and discharge cycles. Si/Li<sub>x</sub>Si<sub>y</sub>O<sub>z</sub> electrode exhibits a specific capacity of 1522.2 mAh g<sup>−1</sup> and an initial coulombic efficiency of 83.5%. The effect of the calendering process is observed, and a pressurization condition of 5000 kgf cm<sup>−2</sup> or less is set, and the ICE is improved to 93.4%–96%. Si/Li<sub>x</sub>Si<sub>y</sub>O<sub>z</sub> electrodes outperform pure crystalline Si electrodes in specific capacity (7.3%), ICE (42%), and retention characteristics (17%). The integration of the Li<sub>x</sub>Si<sub>y</sub>O<sub>z</sub> matrix into Si anodes enhances Li-ion transport and partially suppresses Si expansion. Additionally, the Si/Li<sub>x</sub>Si<sub>y</sub>O<sub>z</sub> electrode exhibits superior rate capability in the 0.2–1.6 A g<sup>−1</sup> range.</p>","PeriodicalId":7292,"journal":{"name":"Advanced Materials Technologies","volume":null,"pages":null},"PeriodicalIF":6.4000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing Charging Efficiency with Lithium Silicate in Silicon Composite Anode Materials Through Lithiothermic Reduction Reaction Synthesis\",\"authors\":\"Kyoung-Jin Jeong,&nbsp;Sarwar Hossen,&nbsp;Md Tareq Rahman,&nbsp;Joon Sub Shim,&nbsp;Dong-Hee Lee,&nbsp;Hayk H. Nersisyan,&nbsp;JongHyeon Lee\",\"doi\":\"10.1002/admt.202302055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study synthesizes silicon (Si) powders with lithium silicates including lithium orthosilicate (Li<sub>4</sub>SiO<sub>4</sub>), lithium metasilicate (Li<sub>2</sub>SiO<sub>3</sub>), and lithium disilicate (Li<sub>2</sub>Si<sub>2</sub>O<sub>5</sub>), creating a composite structure of crystalline Si within a Li<sub>x</sub>Si<sub>y</sub>O<sub>z</sub> matrix through the lithiothermic reduction reaction (LTRR) process. The reduction of Li-ion consumption of the anode is investigated by 1) initial solid electrolyte interphase (SEI) layer formation, 2) SEI layer formation in response to Si expansion-induced damage, 3) trapping of Li ions at Si defects, and 4) side reactions during initial charge and discharge cycles. Si/Li<sub>x</sub>Si<sub>y</sub>O<sub>z</sub> electrode exhibits a specific capacity of 1522.2 mAh g<sup>−1</sup> and an initial coulombic efficiency of 83.5%. The effect of the calendering process is observed, and a pressurization condition of 5000 kgf cm<sup>−2</sup> or less is set, and the ICE is improved to 93.4%–96%. Si/Li<sub>x</sub>Si<sub>y</sub>O<sub>z</sub> electrodes outperform pure crystalline Si electrodes in specific capacity (7.3%), ICE (42%), and retention characteristics (17%). The integration of the Li<sub>x</sub>Si<sub>y</sub>O<sub>z</sub> matrix into Si anodes enhances Li-ion transport and partially suppresses Si expansion. Additionally, the Si/Li<sub>x</sub>Si<sub>y</sub>O<sub>z</sub> electrode exhibits superior rate capability in the 0.2–1.6 A g<sup>−1</sup> range.</p>\",\"PeriodicalId\":7292,\"journal\":{\"name\":\"Advanced Materials Technologies\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2024-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials Technologies\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/admt.202302055\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Technologies","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/admt.202302055","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究将硅(Si)粉末与锂硅酸盐(包括正硅酸锂(Li4SiO4)、偏硅酸锂(Li2SiO3)和二硅酸锂(Li2Si2O5))合成,通过锂热还原反应(LTRR)过程在 LixSiyOz 基体中形成晶体硅的复合结构。研究通过以下几个方面减少阳极的锂离子消耗:1)初始固体电解质相间层(SEI)的形成;2)SEI 层的形成对硅膨胀引起的损伤的响应;3)锂离子在硅缺陷处的捕获;以及 4)初始充放电循环过程中的副反应。Si/LixSiyOz 电极的比容量为 1522.2 mAh g-1,初始库仑效率为 83.5%。通过观察压延工艺的效果,将加压条件设定为 5000 kgf cm-2 或更低,ICE 提高到 93.4%-96% 。Si/LixSiyOz 电极在比容量(7.3%)、ICE(42%)和保持特性(17%)方面均优于纯晶硅电极。将 LixSiyOz 矩阵集成到硅阳极中可增强锂离子传输并部分抑制硅膨胀。此外,Si/LixSiyOz 电极在 0.2-1.6 A g-1 的范围内表现出卓越的速率能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhancing Charging Efficiency with Lithium Silicate in Silicon Composite Anode Materials Through Lithiothermic Reduction Reaction Synthesis

This study synthesizes silicon (Si) powders with lithium silicates including lithium orthosilicate (Li4SiO4), lithium metasilicate (Li2SiO3), and lithium disilicate (Li2Si2O5), creating a composite structure of crystalline Si within a LixSiyOz matrix through the lithiothermic reduction reaction (LTRR) process. The reduction of Li-ion consumption of the anode is investigated by 1) initial solid electrolyte interphase (SEI) layer formation, 2) SEI layer formation in response to Si expansion-induced damage, 3) trapping of Li ions at Si defects, and 4) side reactions during initial charge and discharge cycles. Si/LixSiyOz electrode exhibits a specific capacity of 1522.2 mAh g−1 and an initial coulombic efficiency of 83.5%. The effect of the calendering process is observed, and a pressurization condition of 5000 kgf cm−2 or less is set, and the ICE is improved to 93.4%–96%. Si/LixSiyOz electrodes outperform pure crystalline Si electrodes in specific capacity (7.3%), ICE (42%), and retention characteristics (17%). The integration of the LixSiyOz matrix into Si anodes enhances Li-ion transport and partially suppresses Si expansion. Additionally, the Si/LixSiyOz electrode exhibits superior rate capability in the 0.2–1.6 A g−1 range.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Materials Technologies
Advanced Materials Technologies Materials Science-General Materials Science
CiteScore
10.20
自引率
4.40%
发文量
566
期刊介绍: Advanced Materials Technologies Advanced Materials Technologies is the new home for all technology-related materials applications research, with particular focus on advanced device design, fabrication and integration, as well as new technologies based on novel materials. It bridges the gap between fundamental laboratory research and industry.
期刊最新文献
Ambipolar Charge Injection and Bright Light Emission in Hybrid Oxide/Polymer Transistors Doped with Poly(9-Vinylcarbazole) Based Polyelectrolytes (Adv. Mater. Technol. 20/2024) 3D Printed Supercapacitors Based on Laser-derived Hierarchical Nanocomposites of Bimetallic Co/Zn Metal-Organic Framework and Graphene Oxide (Adv. Mater. Technol. 20/2024) Hierarchical Composites Patterned via 3D Printed Cellular Fluidics (Adv. Mater. Technol. 20/2024) An Artificial Tactile Perception System with Spatio-Temporal Recognition Capability (Adv. Mater. Technol. 20/2024) Masthead: (Adv. Mater. Technol. 20/2024)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1