{"title":"掺杂植酸-尿素盐的混合溶胶-凝胶涂层用于涤纶/棉混纺织物的防火保护","authors":"Shuang Dong, Lin-Xia Lu, Yi-Ting Huang, Bing Zhao, Jun Zhang, Xian-Wei Cheng, Jinying Guan","doi":"10.1680/jsuin.24.00038","DOIUrl":null,"url":null,"abstract":"It is highly desirable to construct a sustainable hybrid silica coating to enhance the flame retardant (FR) properties of polyester/cotton (T/C) blend fabrics. In this study, a novel urea phytate salt was synthesized and used to prepare a phosphorus/nitrogen-doped hybrid silica sol system. The hybrid silica coating was then applied to the T/C fabric to develop a highly efficient FR-coated T/C fabric with improved washing durability. The surface morphology, size distribution, and condensation degree of the hybrid silica sol particles were characterized. The thermal stability, heat release, flame retardancy, and mode of action of the coated T/C fabrics were also investigated. The coated T/C fabrics exhibited self-extinguishing performance, with the damaged length decreasing from 30 cm to 8.5 cm and the LOI increasing from 17.1% to 30%. The desirable flame retardancy of the coated T/C fabric was well maintained even after 10 washing cycles. The remarkably inhibited heat release ability suggested a decreased fire hazard. A potential condensed-phase flame retardancy mechanism was proposed based on TG and char residue analyses. This study presents an eco-friendly and efficient hybrid silica coating that effectively reduces the fire hazard of T/C fabrics.","PeriodicalId":22032,"journal":{"name":"Surface Innovations","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hybrid sol-gel coatings doped with phytic acid-urea salt for fire protection of polyester/cotton blend fabrics\",\"authors\":\"Shuang Dong, Lin-Xia Lu, Yi-Ting Huang, Bing Zhao, Jun Zhang, Xian-Wei Cheng, Jinying Guan\",\"doi\":\"10.1680/jsuin.24.00038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is highly desirable to construct a sustainable hybrid silica coating to enhance the flame retardant (FR) properties of polyester/cotton (T/C) blend fabrics. In this study, a novel urea phytate salt was synthesized and used to prepare a phosphorus/nitrogen-doped hybrid silica sol system. The hybrid silica coating was then applied to the T/C fabric to develop a highly efficient FR-coated T/C fabric with improved washing durability. The surface morphology, size distribution, and condensation degree of the hybrid silica sol particles were characterized. The thermal stability, heat release, flame retardancy, and mode of action of the coated T/C fabrics were also investigated. The coated T/C fabrics exhibited self-extinguishing performance, with the damaged length decreasing from 30 cm to 8.5 cm and the LOI increasing from 17.1% to 30%. The desirable flame retardancy of the coated T/C fabric was well maintained even after 10 washing cycles. The remarkably inhibited heat release ability suggested a decreased fire hazard. A potential condensed-phase flame retardancy mechanism was proposed based on TG and char residue analyses. This study presents an eco-friendly and efficient hybrid silica coating that effectively reduces the fire hazard of T/C fabrics.\",\"PeriodicalId\":22032,\"journal\":{\"name\":\"Surface Innovations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surface Innovations\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1680/jsuin.24.00038\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Innovations","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1680/jsuin.24.00038","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Hybrid sol-gel coatings doped with phytic acid-urea salt for fire protection of polyester/cotton blend fabrics
It is highly desirable to construct a sustainable hybrid silica coating to enhance the flame retardant (FR) properties of polyester/cotton (T/C) blend fabrics. In this study, a novel urea phytate salt was synthesized and used to prepare a phosphorus/nitrogen-doped hybrid silica sol system. The hybrid silica coating was then applied to the T/C fabric to develop a highly efficient FR-coated T/C fabric with improved washing durability. The surface morphology, size distribution, and condensation degree of the hybrid silica sol particles were characterized. The thermal stability, heat release, flame retardancy, and mode of action of the coated T/C fabrics were also investigated. The coated T/C fabrics exhibited self-extinguishing performance, with the damaged length decreasing from 30 cm to 8.5 cm and the LOI increasing from 17.1% to 30%. The desirable flame retardancy of the coated T/C fabric was well maintained even after 10 washing cycles. The remarkably inhibited heat release ability suggested a decreased fire hazard. A potential condensed-phase flame retardancy mechanism was proposed based on TG and char residue analyses. This study presents an eco-friendly and efficient hybrid silica coating that effectively reduces the fire hazard of T/C fabrics.
Surface InnovationsCHEMISTRY, PHYSICALMATERIALS SCIENCE, COAT-MATERIALS SCIENCE, COATINGS & FILMS
CiteScore
5.80
自引率
22.90%
发文量
66
期刊介绍:
The material innovations on surfaces, combined with understanding and manipulation of physics and chemistry of functional surfaces and coatings, have exploded in the past decade at an incredibly rapid pace.
Superhydrophobicity, superhydrophlicity, self-cleaning, self-healing, anti-fouling, anti-bacterial, etc., have become important fundamental topics of surface science research community driven by curiosity of physics, chemistry, and biology of interaction phenomenon at surfaces and their enormous potential in practical applications. Materials having controlled-functionality surfaces and coatings are important to the manufacturing of new products for environmental control, liquid manipulation, nanotechnological advances, biomedical engineering, pharmacy, biotechnology, and many others, and are part of the most promising technological innovations of the twenty-first century.