微生物功能代谢驱动外源添加剂对好氧堆肥过程中碳储存和降解的影响

Mingxiu Li, Manli Duan, Zhenlun Qin, Beibei Zhou, Quanjiu Wang, Hongbo Xu, Haiyong Weng
{"title":"微生物功能代谢驱动外源添加剂对好氧堆肥过程中碳储存和降解的影响","authors":"Mingxiu Li, Manli Duan, Zhenlun Qin, Beibei Zhou, Quanjiu Wang, Hongbo Xu, Haiyong Weng","doi":"10.3389/fenvs.2024.1396099","DOIUrl":null,"url":null,"abstract":"This study conducted composting experiments using cow manure and wheat straw, employing five different treatment methods (CK, magnetized water treatment-M, magnetized water combined with biochar treatment-SM, magnetized water combined with ferrous sulfate treatment-FM, magnetized water combined with Bacillus megaterium treatment-GM), aiming to accelerate the composting maturation process and reduce carbon loss. The results of the experiments showed that the SM treatment entered the thermophilic phase on the second day and lasted for 9 days, resulting in the best maturation effect. The FM treatment increased the carbon content in the compost, effectively preserving carbon sources. principal component analysis analysis revealed significant differences in microbial community structures due to different treatments. Additionally, structural equation modeling observations indicated that different treatments affected the compost environment, thereby influencing microbial activity and carbon content. Overall, the SM treatment positively affected the compost maturation process, while the FM treatment effectively preserved carbon sources in the compost.","PeriodicalId":509564,"journal":{"name":"Frontiers in Environmental Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microbial functional metabolism drives the effects of exogenous additives on carbon storage and degradation during aerobic composting\",\"authors\":\"Mingxiu Li, Manli Duan, Zhenlun Qin, Beibei Zhou, Quanjiu Wang, Hongbo Xu, Haiyong Weng\",\"doi\":\"10.3389/fenvs.2024.1396099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study conducted composting experiments using cow manure and wheat straw, employing five different treatment methods (CK, magnetized water treatment-M, magnetized water combined with biochar treatment-SM, magnetized water combined with ferrous sulfate treatment-FM, magnetized water combined with Bacillus megaterium treatment-GM), aiming to accelerate the composting maturation process and reduce carbon loss. The results of the experiments showed that the SM treatment entered the thermophilic phase on the second day and lasted for 9 days, resulting in the best maturation effect. The FM treatment increased the carbon content in the compost, effectively preserving carbon sources. principal component analysis analysis revealed significant differences in microbial community structures due to different treatments. Additionally, structural equation modeling observations indicated that different treatments affected the compost environment, thereby influencing microbial activity and carbon content. Overall, the SM treatment positively affected the compost maturation process, while the FM treatment effectively preserved carbon sources in the compost.\",\"PeriodicalId\":509564,\"journal\":{\"name\":\"Frontiers in Environmental Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Environmental Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fenvs.2024.1396099\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Environmental Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fenvs.2024.1396099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究利用牛粪和小麦秸秆进行了堆肥实验,采用了五种不同的处理方法(CK、磁化水处理-M、磁化水与生物炭结合处理-SM、磁化水与硫酸亚铁结合处理-FM、磁化水与巨型芽孢杆菌结合处理-GM),旨在加速堆肥成熟过程并减少碳损失。实验结果表明,硫酸亚铁处理从第二天开始进入嗜热阶段,持续 9 天,熟化效果最好。FM 处理增加了堆肥中的碳含量,有效保留了碳源。主成分分析显示,不同处理导致微生物群落结构存在显著差异。此外,结构方程模型观测结果表明,不同处理会影响堆肥环境,从而影响微生物活性和碳含量。总体而言,SM 处理对堆肥成熟过程产生了积极影响,而 FM 处理则有效地保留了堆肥中的碳源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Microbial functional metabolism drives the effects of exogenous additives on carbon storage and degradation during aerobic composting
This study conducted composting experiments using cow manure and wheat straw, employing five different treatment methods (CK, magnetized water treatment-M, magnetized water combined with biochar treatment-SM, magnetized water combined with ferrous sulfate treatment-FM, magnetized water combined with Bacillus megaterium treatment-GM), aiming to accelerate the composting maturation process and reduce carbon loss. The results of the experiments showed that the SM treatment entered the thermophilic phase on the second day and lasted for 9 days, resulting in the best maturation effect. The FM treatment increased the carbon content in the compost, effectively preserving carbon sources. principal component analysis analysis revealed significant differences in microbial community structures due to different treatments. Additionally, structural equation modeling observations indicated that different treatments affected the compost environment, thereby influencing microbial activity and carbon content. Overall, the SM treatment positively affected the compost maturation process, while the FM treatment effectively preserved carbon sources in the compost.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Editorial: Co-creating knowledge for community resilience to sustainability challenges Synergic effect of thermo-chemical pretreatment of waste-activated sludge on bio-methane enhancement Institutional pressure and low carbon innovation policy: the role of EMS, environmental interpretations and governance heterogeneity Environmental liability insurance, green innovation, and mediation effect study Can urbanization improve carbon performance?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1