Jinyi Zhang, Ke Su, Haowei Li, Jiannan Mao, Ye Tian, Feng Wen, Chong Guo, Tadahiro Matsumoto
{"title":"以中文为中心的低资源语言神经机器翻译:调查","authors":"Jinyi Zhang, Ke Su, Haowei Li, Jiannan Mao, Ye Tian, Feng Wen, Chong Guo, Tadahiro Matsumoto","doi":"10.1145/3665244","DOIUrl":null,"url":null,"abstract":"Machine translation—the automatic transformation of one natural language (source language) into another (target language) through computational means—occupies a central role in computational linguistics and stands as a cornerstone of research within the field of Natural Language Processing (NLP). In recent years, the prominence of Neural Machine Translation (NMT) has grown exponentially, offering an advanced framework for machine translation research. It is noted for its superior translation performance, especially when tackling the challenges posed by low-resource language pairs that suffer from a limited corpus of data resources. This article offers an exhaustive exploration of the historical trajectory and advancements in NMT, accompanied by an analysis of the underlying foundational concepts. It subsequently provides a concise demarcation of the unique characteristics associated with low-resource languages and presents a succinct review of pertinent translation models and their applications, specifically within the context of languages with low-resources. Moreover, this article delves deeply into machine translation techniques, highlighting approaches tailored for Chinese-centric low-resource languages. Ultimately, it anticipates upcoming research directions in the realm of low-resource language translation.","PeriodicalId":54312,"journal":{"name":"ACM Transactions on Asian and Low-Resource Language Information Processing","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neural Machine Translation for Low-Resource Languages from a Chinese-centric Perspective: A Survey\",\"authors\":\"Jinyi Zhang, Ke Su, Haowei Li, Jiannan Mao, Ye Tian, Feng Wen, Chong Guo, Tadahiro Matsumoto\",\"doi\":\"10.1145/3665244\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Machine translation—the automatic transformation of one natural language (source language) into another (target language) through computational means—occupies a central role in computational linguistics and stands as a cornerstone of research within the field of Natural Language Processing (NLP). In recent years, the prominence of Neural Machine Translation (NMT) has grown exponentially, offering an advanced framework for machine translation research. It is noted for its superior translation performance, especially when tackling the challenges posed by low-resource language pairs that suffer from a limited corpus of data resources. This article offers an exhaustive exploration of the historical trajectory and advancements in NMT, accompanied by an analysis of the underlying foundational concepts. It subsequently provides a concise demarcation of the unique characteristics associated with low-resource languages and presents a succinct review of pertinent translation models and their applications, specifically within the context of languages with low-resources. Moreover, this article delves deeply into machine translation techniques, highlighting approaches tailored for Chinese-centric low-resource languages. Ultimately, it anticipates upcoming research directions in the realm of low-resource language translation.\",\"PeriodicalId\":54312,\"journal\":{\"name\":\"ACM Transactions on Asian and Low-Resource Language Information Processing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Asian and Low-Resource Language Information Processing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3665244\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Asian and Low-Resource Language Information Processing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3665244","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Neural Machine Translation for Low-Resource Languages from a Chinese-centric Perspective: A Survey
Machine translation—the automatic transformation of one natural language (source language) into another (target language) through computational means—occupies a central role in computational linguistics and stands as a cornerstone of research within the field of Natural Language Processing (NLP). In recent years, the prominence of Neural Machine Translation (NMT) has grown exponentially, offering an advanced framework for machine translation research. It is noted for its superior translation performance, especially when tackling the challenges posed by low-resource language pairs that suffer from a limited corpus of data resources. This article offers an exhaustive exploration of the historical trajectory and advancements in NMT, accompanied by an analysis of the underlying foundational concepts. It subsequently provides a concise demarcation of the unique characteristics associated with low-resource languages and presents a succinct review of pertinent translation models and their applications, specifically within the context of languages with low-resources. Moreover, this article delves deeply into machine translation techniques, highlighting approaches tailored for Chinese-centric low-resource languages. Ultimately, it anticipates upcoming research directions in the realm of low-resource language translation.
期刊介绍:
The ACM Transactions on Asian and Low-Resource Language Information Processing (TALLIP) publishes high quality original archival papers and technical notes in the areas of computation and processing of information in Asian languages, low-resource languages of Africa, Australasia, Oceania and the Americas, as well as related disciplines. The subject areas covered by TALLIP include, but are not limited to:
-Computational Linguistics: including computational phonology, computational morphology, computational syntax (e.g. parsing), computational semantics, computational pragmatics, etc.
-Linguistic Resources: including computational lexicography, terminology, electronic dictionaries, cross-lingual dictionaries, electronic thesauri, etc.
-Hardware and software algorithms and tools for Asian or low-resource language processing, e.g., handwritten character recognition.
-Information Understanding: including text understanding, speech understanding, character recognition, discourse processing, dialogue systems, etc.
-Machine Translation involving Asian or low-resource languages.
-Information Retrieval: including natural language processing (NLP) for concept-based indexing, natural language query interfaces, semantic relevance judgments, etc.
-Information Extraction and Filtering: including automatic abstraction, user profiling, etc.
-Speech processing: including text-to-speech synthesis and automatic speech recognition.
-Multimedia Asian Information Processing: including speech, image, video, image/text translation, etc.
-Cross-lingual information processing involving Asian or low-resource languages.
-Papers that deal in theory, systems design, evaluation and applications in the aforesaid subjects are appropriate for TALLIP. Emphasis will be placed on the originality and the practical significance of the reported research.