Jining Li, Jiyue Chen, Dexian Yan, Fei Fan, Kai Chen, Kai Zhong, Yuye Wang, Zhen Tian, Degang Xu
{"title":"综述:有源可调谐太赫兹超材料","authors":"Jining Li, Jiyue Chen, Dexian Yan, Fei Fan, Kai Chen, Kai Zhong, Yuye Wang, Zhen Tian, Degang Xu","doi":"10.1002/adpr.202300351","DOIUrl":null,"url":null,"abstract":"<p>The diversity and practicability of terahertz metamaterials have experienced rapid development in the past decade due to the increasing demand for various devices. This topic has attracted significant interest from researchers. Among the key functional devices in terahertz metamaterial systems, the active control ability of terahertz metamaterials is highly valuable and captivating. This implies that the electromagnetic properties of metamaterials can be modulated over a wide dynamic range by external stimuli. This review categorizes the different types of tunable terahertz metamaterials based on the external stimuli to which they respond, namely, mechanical modulation, electrical modulation, magnetic modulation, and optical modulation. Mechanically modulated devices offer simple yet efficient modulation, while electrical and magnetic modulation provide effective active modulation through electrical mechanisms. Optical modulation, in contrast, focuses on incorporating various materials to achieve active modulation.</p>","PeriodicalId":7263,"journal":{"name":"Advanced Photonics Research","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202300351","citationCount":"0","resultStr":"{\"title\":\"A Review: Active Tunable Terahertz Metamaterials\",\"authors\":\"Jining Li, Jiyue Chen, Dexian Yan, Fei Fan, Kai Chen, Kai Zhong, Yuye Wang, Zhen Tian, Degang Xu\",\"doi\":\"10.1002/adpr.202300351\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The diversity and practicability of terahertz metamaterials have experienced rapid development in the past decade due to the increasing demand for various devices. This topic has attracted significant interest from researchers. Among the key functional devices in terahertz metamaterial systems, the active control ability of terahertz metamaterials is highly valuable and captivating. This implies that the electromagnetic properties of metamaterials can be modulated over a wide dynamic range by external stimuli. This review categorizes the different types of tunable terahertz metamaterials based on the external stimuli to which they respond, namely, mechanical modulation, electrical modulation, magnetic modulation, and optical modulation. Mechanically modulated devices offer simple yet efficient modulation, while electrical and magnetic modulation provide effective active modulation through electrical mechanisms. Optical modulation, in contrast, focuses on incorporating various materials to achieve active modulation.</p>\",\"PeriodicalId\":7263,\"journal\":{\"name\":\"Advanced Photonics Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202300351\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Photonics Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adpr.202300351\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Photonics Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adpr.202300351","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
The diversity and practicability of terahertz metamaterials have experienced rapid development in the past decade due to the increasing demand for various devices. This topic has attracted significant interest from researchers. Among the key functional devices in terahertz metamaterial systems, the active control ability of terahertz metamaterials is highly valuable and captivating. This implies that the electromagnetic properties of metamaterials can be modulated over a wide dynamic range by external stimuli. This review categorizes the different types of tunable terahertz metamaterials based on the external stimuli to which they respond, namely, mechanical modulation, electrical modulation, magnetic modulation, and optical modulation. Mechanically modulated devices offer simple yet efficient modulation, while electrical and magnetic modulation provide effective active modulation through electrical mechanisms. Optical modulation, in contrast, focuses on incorporating various materials to achieve active modulation.