Verónica J. Abuchar, Carlos A. Arteta, Jose L. De La Hoz, Camilo Vieira
{"title":"基于风险的工程学课程学生成绩预测模型","authors":"Verónica J. Abuchar, Carlos A. Arteta, Jose L. De La Hoz, Camilo Vieira","doi":"10.1002/cae.22757","DOIUrl":null,"url":null,"abstract":"<p>High academic failure and dropout rates in engineering courses are significant worldwide concerns attributed to various factors, with academic performance being a critical variable. This article provides a methodology to estimate the performance risk of students in engineering schools. Risk analysis is a strategy to evaluate academic success, which provides a set of methods to analyze, understand, and predict student outcomes before enrolling in specific majors or challenging college courses. This article develops a methodology to estimate fragility curves for students entering an engineering course. The fragility function concept, borrowed from the earthquake engineering field, estimates the likelihood of success in a course, given relevant student metadata, such as the grade point average, thus comprehensively addressing student performance variability. A student academic success prediction model enables instructional designers to make informed decisions. For example, fragility curves can help achieve two goals: (i) assessing the population at risk for a course to take actions to improve student success rates and (ii) assessing a course's relative difficulty based on its fragility function parameters. We demonstrate this methodology through a case study comparing the relative difficulty of two engineering courses, Statics and Solid Mechanics, at a university in Colombia. Given that Statics serves as a prerequisite for Solid Mechanics, deficiencies in the former can significantly impact student performance in the latter. The case study results reveal that Solid Mechanics poses a higher risk of academic failure than Statics, underscoring the importance of a strong foundation in prerequisite courses.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Risk-based student performance prediction model for engineering courses\",\"authors\":\"Verónica J. Abuchar, Carlos A. Arteta, Jose L. De La Hoz, Camilo Vieira\",\"doi\":\"10.1002/cae.22757\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>High academic failure and dropout rates in engineering courses are significant worldwide concerns attributed to various factors, with academic performance being a critical variable. This article provides a methodology to estimate the performance risk of students in engineering schools. Risk analysis is a strategy to evaluate academic success, which provides a set of methods to analyze, understand, and predict student outcomes before enrolling in specific majors or challenging college courses. This article develops a methodology to estimate fragility curves for students entering an engineering course. The fragility function concept, borrowed from the earthquake engineering field, estimates the likelihood of success in a course, given relevant student metadata, such as the grade point average, thus comprehensively addressing student performance variability. A student academic success prediction model enables instructional designers to make informed decisions. For example, fragility curves can help achieve two goals: (i) assessing the population at risk for a course to take actions to improve student success rates and (ii) assessing a course's relative difficulty based on its fragility function parameters. We demonstrate this methodology through a case study comparing the relative difficulty of two engineering courses, Statics and Solid Mechanics, at a university in Colombia. Given that Statics serves as a prerequisite for Solid Mechanics, deficiencies in the former can significantly impact student performance in the latter. The case study results reveal that Solid Mechanics poses a higher risk of academic failure than Statics, underscoring the importance of a strong foundation in prerequisite courses.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cae.22757\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cae.22757","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Risk-based student performance prediction model for engineering courses
High academic failure and dropout rates in engineering courses are significant worldwide concerns attributed to various factors, with academic performance being a critical variable. This article provides a methodology to estimate the performance risk of students in engineering schools. Risk analysis is a strategy to evaluate academic success, which provides a set of methods to analyze, understand, and predict student outcomes before enrolling in specific majors or challenging college courses. This article develops a methodology to estimate fragility curves for students entering an engineering course. The fragility function concept, borrowed from the earthquake engineering field, estimates the likelihood of success in a course, given relevant student metadata, such as the grade point average, thus comprehensively addressing student performance variability. A student academic success prediction model enables instructional designers to make informed decisions. For example, fragility curves can help achieve two goals: (i) assessing the population at risk for a course to take actions to improve student success rates and (ii) assessing a course's relative difficulty based on its fragility function parameters. We demonstrate this methodology through a case study comparing the relative difficulty of two engineering courses, Statics and Solid Mechanics, at a university in Colombia. Given that Statics serves as a prerequisite for Solid Mechanics, deficiencies in the former can significantly impact student performance in the latter. The case study results reveal that Solid Mechanics poses a higher risk of academic failure than Statics, underscoring the importance of a strong foundation in prerequisite courses.