N. T. Thom, Hoang Thai Ha, Vu Thi Thu, Pham Thi Nam, Nguyen Tuan Anh, D. T. M. Thanh, R. K. Shuib, Tran Dai Lam
{"title":"制备基于 MXene-Ti3C2 和椰壳活性炭的复合材料,用于咸水淡化","authors":"N. T. Thom, Hoang Thai Ha, Vu Thi Thu, Pham Thi Nam, Nguyen Tuan Anh, D. T. M. Thanh, R. K. Shuib, Tran Dai Lam","doi":"10.1515/pac-2024-0107","DOIUrl":null,"url":null,"abstract":"\n MXenes is a new two-dimensional material which is gaining more attention in recent years for applications in catalysis, energy storage, and environmental remediation. In this study, MXene-Ti3C2 is synthesized from precursor MAX-Ti3AlC2 via etching method and then combined with coconutshell-derived activated carbon to provide a highly conductive and porous composite. The composite will be later employed as electrode materials in capacitive deionization for water desalination. The results have shown an increase in specific capacitance by 3.7 times in the composite (0.5 wt% MXene-Ti3C2) when compared with pure activated carbon. These promising results have proved the possibility to use MXenes-based composites for desalination and other treatment techniques for salted water.","PeriodicalId":20911,"journal":{"name":"Pure and Applied Chemistry","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preparation of composite based on MXene-Ti3C2 and coconutshell-derived activated carbon for desalination of brackish water\",\"authors\":\"N. T. Thom, Hoang Thai Ha, Vu Thi Thu, Pham Thi Nam, Nguyen Tuan Anh, D. T. M. Thanh, R. K. Shuib, Tran Dai Lam\",\"doi\":\"10.1515/pac-2024-0107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n MXenes is a new two-dimensional material which is gaining more attention in recent years for applications in catalysis, energy storage, and environmental remediation. In this study, MXene-Ti3C2 is synthesized from precursor MAX-Ti3AlC2 via etching method and then combined with coconutshell-derived activated carbon to provide a highly conductive and porous composite. The composite will be later employed as electrode materials in capacitive deionization for water desalination. The results have shown an increase in specific capacitance by 3.7 times in the composite (0.5 wt% MXene-Ti3C2) when compared with pure activated carbon. These promising results have proved the possibility to use MXenes-based composites for desalination and other treatment techniques for salted water.\",\"PeriodicalId\":20911,\"journal\":{\"name\":\"Pure and Applied Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pure and Applied Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1515/pac-2024-0107\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pure and Applied Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1515/pac-2024-0107","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Preparation of composite based on MXene-Ti3C2 and coconutshell-derived activated carbon for desalination of brackish water
MXenes is a new two-dimensional material which is gaining more attention in recent years for applications in catalysis, energy storage, and environmental remediation. In this study, MXene-Ti3C2 is synthesized from precursor MAX-Ti3AlC2 via etching method and then combined with coconutshell-derived activated carbon to provide a highly conductive and porous composite. The composite will be later employed as electrode materials in capacitive deionization for water desalination. The results have shown an increase in specific capacitance by 3.7 times in the composite (0.5 wt% MXene-Ti3C2) when compared with pure activated carbon. These promising results have proved the possibility to use MXenes-based composites for desalination and other treatment techniques for salted water.
期刊介绍:
Pure and Applied Chemistry is the official monthly Journal of IUPAC, with responsibility for publishing works arising from those international scientific events and projects that are sponsored and undertaken by the Union. The policy is to publish highly topical and credible works at the forefront of all aspects of pure and applied chemistry, and the attendant goal is to promote widespread acceptance of the Journal as an authoritative and indispensable holding in academic and institutional libraries.